

byteWIKI

[image: _images/8104c0d0d822584caadfc9153884a7f541ccd17e.jpg]

About

	About the company

Documentation

	Unboxing byteDEVKIT STM32MP1
	Technical overview byteDEVKIT STM32MP1

	Unboxing Video Tutorial

	First start byteDEVKIT STM32MP1
	Connecting the Hardware and first Booting

	Bring-up byteDEVKIT STM32MP1
	How do I connect to byteDEVKIT using the serial console?
	LINUX

	WINDOWS

	How to install additional software using apt

	Software Development
	byteDEVKIT-am62x (Yocto 4.0)
	Downloads
	SD card image

	Toolchain

	U-Boot

	Image
	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	U-Boot
	Download U-Boot Source Code

	Build U-Boot

	Install SPL and U-Boot
	SD Card

	eMMC via SD Card

	byteDEVKIT-imx8mm (Yocto 4.0)
	Downloads
	SD card image

	Toolchain

	U-Boot

	Image
	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	U-Boot
	Download U-Boot Source Code

	Build U-Boot

	Install SPL and U-Boot

	byteDEVKIT-stm32mp1 (Yocto 4.0)
	Downloads
	SD card image

	Toolchain

	U-Boot

	Image
	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	U-Boot
	Download U-Boot Source Code

	Build U-Boot

	Install SPL and U-Boot

	Archive
	byteDEVKIT-am335x (Yocto 3.1)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	byteDEVKIT-stm32mp1 (Yocto 3.1)
	Downloads
	SD card image

	Toolchain

	U-Boot

	Image
	How do you flash the image?

	How do you build an image?

	Toolchain
	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	U-Boot
	Download U-Boot

	Build U-Boot

	Install SPL and U-Boot

	byteDEVKIT-stm32mp1 (Yocto 3.2)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	U-Boot
	Download U-Boot

	Build U-Boot

	byteDEVKIT (Yocto 3.0)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	bytePANEL (Yocto 3.0)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	byteDEVKIT (Yocto 2.7)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	bytePANEL (Yocto 2.7)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	Hardware Development
	byteENGINE AM335x

	byteENGINE STM32MP1x

	Errata
	byteDEVKIT < V1.2
	STM32MP1 Ethernet

[image: _images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg]

About the company

[image: _images/bytes.png]
bytes at work is a modern Swiss Technology company specialized in industrial computing. Our focus lies on the development of hardware and embedded software, as well as customizing Linux systems. The entire development life cycle takes place in-house with transparent project management and customer involvement. This significantly reduces both development time and development costs.

We have years of experience in developing coordinated hardware and software solutions – from the prototype to the final product. We make your system usable end-to-end for your needs.

Our philosophy

Hardware and software for industrial computers have to fulfill an immense range of demanding challenges. They are used in completely different areas of industries and they have to be able to adapt unique and specific tasks. Our employees pay particular attention to each and every customer. That is why our products and services meet and even exceed our customers expectations.

We from bytes at work are aware that the current persistent industrial development also has its darker side. This is our motivation to be exemplary in terms of use of resources. No wonder that unconditional reliability, long service life and low power consumption are main features of all our products.

[image: _images/6d9327d3b5c06744d606e10756f302f12b219a88.jpg]

Unboxing byteDEVKIT STM32MP1

This guide delivers new users a brief overview of the package content and the functions of our byteDEVKIT STM32MP1. When unboxing you should find the following components:

	The byteDEVKIT STM32MP1 with a 5-inch touchscreen display

[image: _images/unboxing_2kl.jpg]

	The SOM STM32MP1x

Note

The SOM STM32MP1x is already connected with the byteDEVKIT STM32MP1.

[image: _images/unboxing_4kl.jpg]

	The power supply for the byteDEVKIT STM32MP1

[image: _images/unboxing_8kl.jpg]

	The USB serial cable for the byteDEVKIT STM32MP1

[image: _images/unboxing_9kl.jpg]

	micro-SD card with preinstalled Linux

[image: _images/unboxing_10kl.jpg]

Technical overview byteDEVKIT STM32MP1

	The byteDEVKIT STM32MP1 offers the following connectors on the front side:

	USB 2.0

	RJ45 Ethernet 1 Gbit

	USB OTG

	Power connector

[image: _images/unboxing_7kl.jpg]

	You find the extension on the backside. The byteDEVKIT STM32MP1 offers:

	40 pin header compatible for the rasperry pi

	60 pin header with all the needed signals: I2C, SPI, CAN, UART, I2S, LDC, GPIO and PWM

[image: _images/unboxing_5kl.jpg]

	The micro-SD card slot contains a micro-SD card with preinstalled Linux OS:

[image: _images/unboxing_11kl.jpg]

Note

The micro-SD card is already slotted to the byteDEVKIT STM32MP1.

[image: _images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg]

Unboxing Video Tutorial

 First start byteDEVKIT STM32MP1

First start byteDEVKIT STM32MP1

This guide helps with the first start of the byteDEVKIT STM32MP1:

Connecting the Hardware and first Booting

	Prepare the USB serial cable for connection

	Locate the black cable of the serial connector.

[image: _images/wiring_2kl.jpg]

Caution

Connect the serial cable to the byteDEVKIT STM32MP1 as shown. The black cable must point towards the USB OTG connector.

[image: _images/wiring_3kl.jpg]

	Connect the USB connector with USB port of your computer or laptop.

	Connect the ethernet RJ45 with the byteDEVKIT STM32MP1.

[image: _images/wiring_5kl.jpg]

	Plug in the power socket.

	Connect the power supply cable to the power slot of the byteDEVKIT STM32MP1.

[image: _images/wiring_7kl.jpg]

	A green LED on the backside of the byteDEVKIT STM32MP1 indicates the status of the power supply.

Attention

Your byteDEVKIT STM32MP1 is powered up, when the green LED lights up. If the LED doesn´t light up, check the connection of the power socket.

[image: _images/wiring_8kl.jpg]

	The 5-inch touchscreen display shows the bytes at work-logo when booting.

Hint

The booting procedure will take a few seconds.

[image: _images/wiring_9kl.jpg]

	Now you can access the byteDEVKIT STM32MP1 with your laptop.

Hint

For further information refer to: “Bring-up_byteDEVKIT_STM32MP1 [https://jf-bytewiki.readthedocs.io/en/latest/firststart.html#id1]”.

[image: _images/wiring_10kl.jpg]

Bring-up byteDEVKIT STM32MP1

How do I connect to byteDEVKIT using the serial console?

	
	Use the serial port to connect the byteDEVKIT STM32MP1:
	
	Connect the debug cable with the byteDEVKIT STM32MP1 and your computer/laptop

	Start a serial communication program on your computer/laptop (‹putty›, ‹minicom› or something else)

	Set to 115200, 8N1, no flow control

	login with: user: “root” and password: “rootme”

LINUX

	Start PuTTY

[image: _images/Putty_1.png]

	Click “Serial”

	Change “Serial line” to “/dev/ttyUSB0”

	Change “Speed” to 115200

	Navigate to “Serial” in the menu “Connection”

Hint

make sure you have Data bits set to 8, Stop bits set to 1, Parity to None, Flow control to None

	Click “Open”

	Power up the byteDEVKIT STM32MP1

[image: _images/Putty_2.png]

	Once the login prompt appears, login with user “root” and password “rootme”

[image: _images/Putty_3.png]

Note

You are now succesfully connected to the byteDEVKIT STM32MP1

WINDOWS

	Connect the USB serial adapter to the computer

	Windows installs the driver automatically (if the windows doesn´t install the driver reconnect the serial adapter cable)

	Open device manager and navigate to “Ports (COM & LPT)”

	The serial adapter shows up in the device tree: “Prolific USB-to-Serial Comm Port (COM7)”

	“COM7” is your serial port

	Install a serial terminal application, e.g. PuTTY (version 0.59 and newer) https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

	Start PuTTY

[image: _images/Putty_4.png]

	Click “Serial”

	Change “Serial line” to serial port you found in device manager

	Change “Speed” to 115200

	Navigate to “Serial” in the menu “Connection”

Hint

make sure you have Data bits set to 8, Stop bits set to 1, Parity to None, Flow control to None

	Click “Open”

Power up the byteDEVKIT STM32MP1

[image: _images/Putty_5.png]

Once the login prompt appears, login with user “root” and password “rootme”

[image: _images/Putty_6.png]

Note

You are now successfully connected to the byteDEVKIT STM32MP1

How to install additional software using apt

Hint

Follow the link for additional information about “apt”: https://help.ubuntu.com/community/AptGet/Howto

Note

byteDEVKIT < V1.2: If you are using a LAN switch (hub) with no 1 GbE support see STM32MP1 Ethernet.

	Connect the embedded device’s ethernet to your LAN

	Run: apt-get update

	Run: apt-cache search <software component> to search for available packages
e.g.: apt-cache search nodejs

[image: _images/apt-cache_nodejs.png]

	Run: apt-get install <software component> to install additional software
e.g.: apt-get install nodejs

[image: _images/apt-get_install_wide.png]
[image: _images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg]

 Software Development

Software Development

The entire development life cycle is done in-house with transparent project management and customer involvement. We have proven experience in a wide range of industries, including industrial automation and custom solutions for consumer electronics. This section helps you step by step initiating the software development process.

Current software platforms and images are available directly under this navigation item. Older versions are found in the Archive [https://bytewiki.readthedocs.io/en/latest/archive.html].

Hint

bytePANEL has become outdated. Current software platforms will only support byteDEVKIT with am335x or stm32mp1 modules.

	byteDEVKIT-am62x (Yocto 4.0)
	Downloads
	SD card image

	Toolchain

	U-Boot

	Image
	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	U-Boot
	Download U-Boot Source Code

	Build U-Boot

	Install SPL and U-Boot
	SD Card

	eMMC via SD Card

	byteDEVKIT-imx8mm (Yocto 4.0)
	Downloads
	SD card image

	Toolchain

	U-Boot

	Image
	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	U-Boot
	Download U-Boot Source Code

	Build U-Boot

	Install SPL and U-Boot

	byteDEVKIT-stm32mp1 (Yocto 4.0)
	Downloads
	SD card image

	Toolchain

	U-Boot

	Image
	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	U-Boot
	Download U-Boot Source Code

	Build U-Boot

	Install SPL and U-Boot

	Archive
	byteDEVKIT-am335x (Yocto 3.1)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	byteDEVKIT-stm32mp1 (Yocto 3.1)
	Downloads
	SD card image

	Toolchain

	U-Boot

	Image
	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	U-Boot
	Download U-Boot

	Build U-Boot

	Install SPL and U-Boot

	byteDEVKIT-stm32mp1 (Yocto 3.2)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	U-Boot
	Download U-Boot

	Build U-Boot

	byteDEVKIT (Yocto 3.0)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	bytePANEL (Yocto 3.0)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	byteDEVKIT (Yocto 2.7)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	bytePANEL (Yocto 2.7)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

[image: _images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg]

 byteDEVKIT-am62x (Yocto 4.0)

byteDEVKIT-am62x (Yocto 4.0)

Downloads

SD card image

	Download

	Checksum (SHA256)

	bytesatwork-minimal-image-bytedevkit-am62x.wic.gz [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-am62x/4.0.9/bytesatwork-minimal-image-bytedevkit-am62x.wic.gz]

	0747dfb463edad01cd3bf7985bed602e717b1dfa2f09258ed6860c37b57c67cb

	bytesatwork-minimal-image-bytedevkit-am62x.wic.bmap [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-am62x/4.0.9/bytesatwork-minimal-image-bytedevkit-am62x.wic.bmap]

	3577b6bc71600903fcba120629a50f5595e25f9ceb63d6301efb3f46d3848115

Hint

Updating from an older image?
You can update your older image by using: apt-get update and apt-get upgrade.

	check for new version in the table above

	edit /etc/apt/sources.list and point to the new package feed

	run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that
an incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

Toolchain

	Download

	Checksum (SHA256)

	poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-aarch64-bytedevkit-am62x-toolchain-4.0.9.sh [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-am62x/4.0.9/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-aarch64-bytedevkit-am62x-toolchain-4.0.9.sh]

	a5e9e6706cbff94fb3e31b41e948cbe1665cabca457e1bf337c59d45d6616c82

U-Boot

	Description

	Download

	Checksum (SHA256)

	SPL R5F

	tiboot3.bin [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-am62x/4.0.9/tiboot3.bin]

	53481b110634d711c43c47db40b2cfbce8b993cc6b63892d204d6563f35ea690

	SPL A53

	tispl.bin [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-am62x/4.0.9/tispl.bin]

	ee581879fba5a58dc872395eda734e5fe4d5bfdc4a4eb48b7e09b21991827908

	U-Boot A53

	u-boot.img [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-am62x/4.0.9/u-boot.img]

	7c14d88c61772c3bb36d4d1441eee46f3d64f4d5d5abbb1b0ba2a264247a20aa

Image

How do you flash the image?

Attention

	You need a microSD card with at least 8GB capacity.

	All existing data on the microSD card will be lost.

	Do not format the microSD card before flashing.

Windows

	Unzip the file bytesatwork-minimal-image-bytedevkit-am62x.wic.gz (e.g. with 7-zip)

	Write the resulting file to the microSD card with a tool like Roadkils Disk Image [https://www.roadkil.net/program.php?ProgramID=12]

Linux

gunzip -c bytesatwork-minimal-image-bytedevkit-am62x.wic.gz | dd of=/dev/mmcblk<X> bs=8M conv=fsync status=progress

Hint

To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytedevkit-am62x.wic.gz /dev/mmcblk<X>

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit-am62x/4.0; cd ~/workdir/bytedevkit-am62x/4.0
$ repo init -b kirkstone -u https://github.com/bytesatwork/bsp-platform-ti.git
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT-am62x:

$ cd ~/workdir/bytedevkit-am62x/4.0
$ MACHINE=bytedevkit-am62x DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

The output is found in:

~/workdir/bytedevkit-am62x/4.0/build/tmp/deploy/images/bytedevkit-am62x

Hint

For additional information about yocto images and how to build them, please visit:
https://docs.yoctoproject.org/4.0.9/brief-yoctoprojectqs/index.html#building-your-image.

How to modify the image

The image recipes can be found in ~/workdir/bytedevkit-am62x/4.0/sources/meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/bytedevkit-am62x/4.0
$ MACHINE=bytedevkit-am62x DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/bytedevkit-am62x/4.0/sources/meta-bytesatwork/recipes-core/images
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

	Image size is too small

If you encounter that your image size is too small to install additional software,
please have a look at the IMAGE_ROOTFS_SIZE variable under
~/workdir/bytedevkit-am62x/4.0/sources/meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb.
Increase the size if necessary.

Toolchain

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is
a self-extracting shell script.

Hint

If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is executable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important

	The following tools need to be installed on your development system:
	
	xz (Debian package: xz-utils)

	python (any version)

	gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/4.0.9/environment-setup-aarch64-poky-linux

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

aarch64-poky-linux-gcc -fstack-protector-strong -O2 -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-security --sysroot=/opt/poky-bytesatwork/4.0.9_bytedevkit-am62x/sysroots/aarch64-poky-linux

Crosscompile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 64-bit LSB pie executable, ARM aarch64, version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-aarch64.so.1, BuildID[sha1]=257792938c3ed4fbf6b15d071c60973ab51b2f37, for GNU/Linux 3.14.0, with debug_info, not stripped

How to bring your binary to the target?

	Connect the embedded device’s ethernet to your LAN

	Determine the embedded target IP address by ip addr show

[image: ../../_images/ip_addr_show_28.png]

	Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/tmp

[image: ../../_images/scp2.png]

	Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

	Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytedevkit-am62x/4.0
$ repo init -b kirkstone -u https://github.com/bytesatwork/bsp-platform-ti.git
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT-am62x:

$ cd ~/workdir/bytedevkit-am62x/4.0
$ MACHINE=bytedevkit-am62x DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit-am62x/4.0/build/tmp/deploy/sdk

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add additional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image recipe. It can be found under ~/workdir/bytedevkit-am62x/4.0/sources/meta-bytesatwork/recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software components, the toolchain needs to be rebuilt by:

$ cd ~/workdir/bytedevkit-am62x/4.0
$ MACHINE=bytedevkit-am62x DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/bytedevkit-am62x/4.0/build/tmp/deploy/sdk

For additional information, please visit:
https://docs.yoctoproject.org/4.0.9/overview-manual/concepts.html#cross-development-toolchain-generation.

Kernel

Download the Linux Kernel

	Device

	Branch

	git URL

	bytedevkit-am62x

	baw-ti-linux-6.1.y

	https://github.com/bytesatwork/ti-linux-kernel

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the
provided toolchain from Toolchain or any compatible toolchain (e.g.
from your distribution)

Important

	The following tools need to be installed on your development system:
	
	git

	make

	bc

Note

The following instructions assume, you installed the provided toolchain
for the respective target.

Important

	The following tools need to be installed on your development system:
	
	OpenSSL headers (Debian package: libssl-dev)

	depmod (Debian package: kmod)

	Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

	Source toolchain

source /opt/poky-bytesatwork/4.0.9/environment-setup-aarch64-poky-linux

	Create defconfig

make bytedevkit_am62x_defconfig

	Build Linux kernel

make -j `nproc` Image dtbs modules

	Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary
files need to be installed on the target. This can be done either via
Ethernet (e.g. scp) or by copying the files to the SD card.

Note

For scp installation: Don’t forget to mount /boot on the target.

	File

	Target path

	Target partition

	arch/arm64/boot/Image

	/boot/Image

	/dev/mmcblk1p2

	arch/arm64/boot/dts/ti/k3-am625-bytedevkit.dtb

	/boot/k3-am62x-bytedevkit.dtb

	/dev/mmcblk1p2

Note

After installing a new kernel, it often fails to load modules, as the
signature of the kernel changed and it fails to find its corresponding modules
folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

Otherwise, please follow the instructions to copy the kernel modules

	Install kernel modules

To copy all available modules to the target, it’s best to deploy them
locally first and then copy all modules to the target.

mkdir /tmp/bytedevkit-am62x
make INSTALL_MOD_PATH=/tmp/bytedevkit-am62x modules_install

Now you can copy the content of the folder /tmp/bytedevkit-am62x into the
target’s root folder (/) which is partition /dev/mmcblk1p2.

U-Boot

Download U-Boot Source Code

	Device

	Branch

	git URL

	bytedevkit-am62x

	baw-ti-u-boot-2023.04

	https://github.com/bytesatwork/u-boot-ti

Build U-Boot

	Install and get Dependencies

	Cross toolchain [https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/linux/Overview/GCC_ToolChain.html#location-in-sdk]

	TI-linux-firmware [https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/devices/AM62X/linux/Release_Specific_Release_Notes.html#ti-linux-firmware]

	TF-A [https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/devices/AM62X/linux/Release_Specific_Release_Notes.html#tf-a]

	OP-TEE [https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/devices/AM62X/linux/Release_Specific_Release_Notes.html#op-tee]

Hint

Probably some tools are missing on your host:

	A list can be found here
https://docs.u-boot.org/en/latest/build/gcc.html#building-with-gcc

	A non-exhaustive list of (additional) necessary tools

sudo apt install bison flex swig libssl-dev python3-setuptools \
python-dev python3-dev python3-yaml python3-jsonschema

	Build TF-A

TI TF-A build instructions [https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/linux/Foundational_Components_ATF.html#arm-trusted-firmware-a]

	Build OP-TEE

TI OP-TEE build instructions [https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/linux/Foundational_Components_OPTEE.html#op-tee]

	Build u-boot

You should have downloaded TI-linux-firmware and built TF-A, OP-TEE OS already.

TI u-boot build instructions [https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/linux/Foundational_Components/U-Boot/UG-General-Info.html#build-u-boot]

Important

Use am62x_bytedevkit_r5_defconfig and am62x_bytedevkit_a53_defconfig instead of the TI
defconfigs.

Note

Clean command: make ARCH=arm CROSS_COMPILE=aarch64-linux-gnu- O=<your_dir> distclean

Install SPL and U-Boot

SD Card

To use the newly created U-Boot, the necessary files need to be installed on
the SD card. This can be done either on the host or on the target.

	File

	Target partition

	Target partition label

	File system

	tiboot3.bin tispl.bin u-boot.img

	/dev/mmcblk1p1 (or /dev/sdX)

	boot

	FAT32

You need to copy the files to the boot partition. The example assumes that the boot partition is
mounted on /media/${USER}/boot:

cp tiboot3.bin tispl.bin u-boot.img /media/${USER}/boot/

The next time the target is reset, it will start with the new U-Boot.

Hint

Copy the related files to SD card, see end of section
TI u-boot build instructions [https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/linux/Foundational_Components/U-Boot/UG-General-Info.html#build-u-boot]

eMMC via SD Card

	Copy the tiboot3.bin, tispl.bin and u-boot.img to the SD Card rootfs partition.

	Program the tiboot3.bin, tispl.bin and u-boot.img from the SD card to the eMMC.

In the u-boot shell run update_emmc

Or manually by following commands

mmc dev 0 1
load mmc 1:2 ${loadaddr} tiboot3.bin
mmc write ${loadaddr} 0x0 0x400
load mmc 1:2 ${loadaddr} tispl.bin
mmc write ${loadaddr} 0x400 0xC00
load mmc 1:2 ${loadaddr} u-boot.img
mmc write ${loadaddr} 0x1000 0x1000
mmc dev 0 0

Note

The bootloader needs to be stored in the boot0 hardware partition of the eMMC.
The layout of boot0 is defined so that it fits within 4 MiB, defined in blocks
of 512 Bytes:

	File

	start

	end

	size

	tiboot3.bin

	0x0000

	0x0400

	0x0400 512 KiB

	tispl.bin

	0x0400

	0x1000

	0x0C00 1536 KiB

	u-boot.img

	0x1000

	0x2000

	0x1000 2048 KiB

[image: ../../_images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg]

 byteDEVKIT-imx8mm (Yocto 4.0)

byteDEVKIT-imx8mm (Yocto 4.0)

Downloads

SD card image

	Download

	Checksum (SHA256)

	bytesatwork-minimal-image-bytedevkit-imx8mm.wic.gz [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-imx8mm/4.0.9/bytesatwork-minimal-image-bytedevkit-imx8mm.wic.gz]

	99ce54bf379fc97c11157bc48fa0a4fb91ac5f1776968e3bfe2a45471b878427

	bytesatwork-minimal-image-bytedevkit-imx8mm.wic.bmap [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-imx8mm/4.0.9/bytesatwork-minimal-image-bytedevkit-imx8mm.wic.bmap]

	c94c9177bf80a56fb493acd79df8d677cc7b11d70ea6b7b97256647c161872b4

Hint

Updating from an older image?
You can update your older image by using: apt-get update and apt-get upgrade.

	check for new version in the table above

	edit /etc/apt/sources.list and point to the new package feed

	run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that
an incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

Toolchain

	Download

	Checksum (SHA256)

	poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa53-crypto-bytedevkit-imx8mm-toolchain-4.0.9.sh [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-imx8mm/4.0.9/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa53-crypto-bytedevkit-imx8mm-toolchain-4.0.9.sh]

	b558c84d3030628daa4d227ba122a3a4f5deccf476d291bd3584222b38c8427f

U-Boot

	Description

	Download

	Checksum (SHA256)

	U-Boot (SD-card)

	imx-boot-bytedevkit-imx8mm-sd.bin-flash_evk [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-imx8mm/4.0.9/imx-boot-bytedevkit-imx8mm-sd.bin-flash_evk]

	ee2bddafa023d6c84b59474cd783b46fa3bfac7301ba8765d37486dd833b3d0a

Image

How do you flash the image?

Attention

	You need a microSD card with at least 8GB capacity.

	All existing data on the microSD card will be lost.

	Do not format the microSD card before flashing.

Windows

	Unzip the file bytesatwork-minimal-image-bytedevkit-imx8mm.wic.gz (e.g. with 7-zip)

	Write the resulting file to the microSD card with a tool like Roadkils Disk Image [https://www.roadkil.net/program.php?ProgramID=12]

Linux

gunzip -c bytesatwork-minimal-image-bytedevkit-imx8mm.wic.gz | dd of=/dev/mmcblk<X> bs=8M conv=fsync status=progress

Hint

To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytedevkit-imx8mm.wic.gz /dev/mmcblk<X>

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit-imx8mm/4.0; cd ~/workdir/bytedevkit-imx8mm/4.0
$ repo init -b kirkstone -u https://github.com/bytesatwork/bsp-platform-nxp.git
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT-imx8mm:

$ cd ~/workdir/bytedevkit-imx8mm/4.0
$ MACHINE=bytedevkit-imx8mm DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

The output is found in:

~/workdir/bytedevkit-imx8mm/4.0/build/tmp/deploy/images/bytedevkit-imx8mm

Hint

For additional information about yocto images and how to build them, please visit:
https://docs.yoctoproject.org/4.0.9/brief-yoctoprojectqs/index.html#building-your-image.

How to modify the image

The image recipes can be found in ~/workdir/bytedevkit-imx8mm/4.0/sources/meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/bytedevkit-imx8mm/4.0
$ MACHINE=bytedevkit-imx8mm DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/bytedevkit-imx8mm/4.0/sources/meta-bytesatwork/recipes-core/images
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

	Image size is too small

If you encounter that your image size is too small to install additional software,
please have a look at the IMAGE_ROOTFS_SIZE variable under
~/workdir/bytedevkit-imx8mm/4.0/sources/meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb.
Increase the size if necessary.

Toolchain

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is
a self-extracting shell script.

Hint

If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is executable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important

	The following tools need to be installed on your development system:
	
	xz (Debian package: xz-utils)

	python (any version)

	gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/4.0.9/environment-setup-cortexa53-crypto-poky-linux

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

aarch64-poky-linux-gcc -mcpu=cortex-a53 -march=armv8-a+crc+crypto -fstack-protector-strong -O2 -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-security --sysroot=/opt/poky-bytesatwork/4.0.9_bytedevkit-imx8mm/sysroots/cortexa53-crypto-poky-linux

Crosscompile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 64-bit LSB pie executable, ARM aarch64, version 1 (SYSV), dynamically linked, interpreter /lib/ld-linux-aarch64.so.1, BuildID[sha1]=c4a368203085c7897b632728f24bfa60eec34771, for GNU/Linux 3.14.0, with debug_info, not stripped

How to bring your binary to the target?

	Connect the embedded device’s ethernet to your LAN

	Determine the embedded target IP address by ip addr show

[image: ../../_images/ip_addr_show_28.png]

	Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/tmp

[image: ../../_images/scp2.png]

	Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

	Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytedevkit-imx8mm/4.0
$ repo init -b kirkstone -u https://github.com/bytesatwork/bsp-platform-nxp.git
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT-imx8mm:

$ cd ~/workdir/bytedevkit-imx8mm/4.0
$ MACHINE=bytedevkit-imx8mm DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit-imx8mm/4.0/build/tmp/deploy/sdk

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add additional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image recipe. It can be found under ~/workdir/bytedevkit-imx8mm/4.0/sources/meta-bytesatwork/recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software components, the toolchain needs to be rebuilt by:

$ cd ~/workdir/bytedevkit-imx8mm/4.0
$ MACHINE=bytedevkit-imx8mm DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/bytedevkit-imx8mm/4.0/build/tmp/deploy/sdk

For additional information, please visit:
https://docs.yoctoproject.org/4.0.9/overview-manual/concepts.html#cross-development-toolchain-generation.

Kernel

Download the Linux Kernel

	Device

	Branch

	git URL

	bytedevkit-imx8mm

	baw-lf-5.15.y

	https://github.com/bytesatwork/linux-imx.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the
provided toolchain from Toolchain or any compatible toolchain (e.g.
from your distribution)

Important

	The following tools need to be installed on your development system:
	
	git

	make

	bc

Note

The following instructions assume, you installed the provided toolchain
for the respective target.

Important

	The following tools need to be installed on your development system:
	
	OpenSSL headers (Debian package: libssl-dev)

	depmod (Debian package: kmod)

	Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

	Source toolchain

source /opt/poky-bytesatwork/4.0.9/environment-setup-cortexa53-crypto-poky-linux

	Create defconfig

make bytedevkit_imx8mm_defconfig

	Build Linux kernel

make -j `nproc` Image dtbs modules

	Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary
files need to be installed on the target. This can be done either via
Ethernet (e.g. scp) or by copying the files to the SD card.

Note

For scp installation: Don’t forget to mount /boot on the target.

	File

	Target path

	Target partition

	arch/arm64/boot/Image

	/boot/Image

	/dev/mmcblk1p1

	arch/arm64/boot/dts/freescale/imx8mm-bytedevkit.dtb

	/boot/imx8mm-bytedevkit.dtb

	/dev/mmcblk1p1

Note

After installing a new kernel, it often fails to load modules, as the
signature of the kernel changed and it fails to find its corresponding modules
folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

Otherwise, please follow the instructions to copy the kernel modules

	Install kernel modules

To copy all available modules to the target, it’s best to deploy them
locally first and then copy all modules to the target.

mkdir /tmp/bytedevkit-imx8mm
make INSTALL_MOD_PATH=/tmp/bytedevkit-imx8mm modules_install

Now you can copy the content of the folder /tmp/bytedevkit-imx8mm into the
target’s root folder (/) which is partition /dev/mmcblk1p1.

U-Boot

Additional information can be found under
https://www.nxp.com/docs/en/user-guide/IMX_LINUX_USERS_GUIDE.pdf and
https://docs.u-boot.org/en/latest/board/nxp/index.html.

Note

On i.MX 8M Mini, SPL and U-Boot are combined in a container file called
flash.bin (Yocto: imx-boot-bytedevkit-imx8mm-sd.bin-flash_evk).

Download U-Boot Source Code

	Device

	Branch

	git URL

	bytedevkit-imx8mm

	baw-imx_v2020.04_5.4.24_2.1.0

	https://github.com/bytesatwork/u-boot-imx

Build U-Boot

To compile U-Boot, an ARM toolchain is necessary. You can use the provided
toolchain from Toolchain or any compatible
toolchain (e.g. from your distribution)

Important

A list of needed host tools can be found here
https://docs.u-boot.org/en/latest/build/gcc.html#building-with-gcc,
e.g.

sudo apt install bc bison build-essential coccinelle \
device-tree-compiler dfu-util efitools flex gdisk graphviz imagemagick \
liblz4-tool libgnutls28-dev libguestfs-tools libncurses-dev \
libpython3-dev libsdl2-dev libssl-dev lz4 lzma lzma-alone openssl \
pkg-config python3 python3-asteval python3-coverage python3-filelock \
python3-pkg-resources python3-pycryptodome python3-pyelftools \
python3-pytest python3-pytest-xdist python3-sphinxcontrib.apidoc \
python3-sphinx-rtd-theme python3-subunit python3-testtools \
python3-virtualenv swig uuid-dev

fspi_packer.sh additionally needs the package xxd to be
installed on your host:

sudo apt install xxd

Note

The following instructions assume, you installed the provided toolchain
for the respective target.

	Download ARM-Trusted-Firmware sources

	Device

	Branch

	git URL

	bytedevkit-imx8mm

	imx_5.4.24_2.1.0

	https://github.com/nxp-imx/imx-atf

	Build ARM-Trusted-Firmware

cd imx-atf
export CROSS_COMPILE=/opt/poky-bytesatwork/4.0.9/sysroots/x86_64-pokysdk-linux/usr/bin/aarch64-poky-linux/aarch64-poky-linux-
make PLAT=imx8mm bl31
cd ..

	Download IMX Firmware

wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.15.bin
chmod +x firmware-imx-8.15.bin
./firmware-imx-8.15.bin

	Download U-Boot sources

Download the appropriate U-Boot from Download U-Boot Source Code.

	Source toolchain

source /opt/poky-bytesatwork/4.0.9/environment-setup-cortexa53-crypto-poky-linux

	Copy necessary files into U-Boot folder

cp -pv ./firmware-imx-8.15/firmware/ddr/synopsys/lpddr4_pmu_train_* ./u-boot-imx/
cp -pv ./imx-atf/build/imx8mm/release/bl31.bin ./u-boot-imx/

	Build flash.bin

	SD Card

cd u-boot-imx
make distclean
make bytedevkit_defconfig
export ATF_LOAD_ADDR=0x920000
make -j `nproc`
make -j `nproc` flash.bin
cd ..

	SPI

Building for SPI requires IMX mkimage tool

git clone -b lf-5.15.5_1.0.0 https://github.com/nxp-imx/imx-mkimage.git

cd u-boot-imx
make distclean
make bytedevkit_fspi_defconfig
export ATF_LOAD_ADDR=0x920000
make -j `nproc`
make -j `nproc` flash.bin
../imx-mkimage/scripts/fspi_packer.sh ../imx-mkimage/scripts/fspi_header 0
cd ..

Important

The build command will overwrite the generated flash.bin, so you
can not build a binary for the SD Card and the SPI at the same time.

Install SPL and U-Boot

To use the newly created U-Boot, the necessary file needs to be installed
on the SD card. This can be done either on the host or on the target.

	File

	Target partition

	Offset

	flash.bin

Yocto: imx-boot-bytedevkit-imx8mm-sd.bin-flash_evk

	/dev/mmcblk1 (or /dev/sdX)

	33 KiB

You need to write the files to the respective “raw” partition, either on the host
system or the target system:

dd if=./u-boot-imx/flash.bin of=/dev/mmcblk1 bs=1K seek=33

The next time the target is reset, it will start with the new U-Boot.

Note

Flash to SPI

	Copy flash.bin to first SD card partition (root partition)

	You need to boot into u-boot.

	In the u-boot shell: run update-spi

	Or do it manually by

sf probe; sf erase 0 0x200000; load mmc 1:1 ${loadaddr} flash.bin; sf write $loadaddr 0 $filesize

[image: ../../_images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg]

 byteDEVKIT-stm32mp1 (Yocto 4.0)

byteDEVKIT-stm32mp1 (Yocto 4.0)

Downloads

SD card image

	Download

	Checksum (SHA256)

	bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz]

	72e629a3361f2f5529e6124a30ecf7637d0dc0e3045b310d7af8ddbcf3f7ca2b

	bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.bmap [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.bmap]

	9548f8d625f40a8e43009da3635cee5223235e4839043e28bb38c6873abc7747

Hint

Updating from an older image?
You can update your older image by using: apt-get update and apt-get upgrade.

	check for new version in the table above

	edit /etc/apt/sources.list and point to the new package feed

	run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that
an incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

Toolchain

	Download

	Checksum (SHA256)

	poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-toolchain-4.0.9.sh [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-toolchain-4.0.9.sh]

	847997ab62d47598aa743b6192b36ba6425feef3e9d77961384d44be3aa00052

U-Boot

Note

The images come with a preinstalled U-Boot that supports 512 MB of RAM.
If you have a module with 1 GB of RAM, you will have to
Install SPL and U-Boot to unlock the full
1 GB of RAM.

	Description

	Download

	Checksum (SHA256)

	MLO (512 MB)

	u-boot-spl.stm32-stm32mp157c-bytedevkit-v1-3-basic [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/u-boot-spl.stm32-stm32mp157c-bytedevkit-v1-3-basic]

	0556b53f8f9ecff54af89f7fa1f32aec97549aef1a54a1723d3561677804317b

	U-Boot (512 MB)

	u-boot-stm32mp157c-bytedevkit-v1-3-basic.img [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/u-boot-stm32mp157c-bytedevkit-v1-3-basic.img]

	24fbb4bf87bc4a459d7dd9aeb5c906bceb47a3df8a9954e0f3e860e0a085abd6

	MLO (1 GB)

	u-boot-spl.stm32-stm32mp157c-bytedevkit-v1-3-1g_ram [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/u-boot-spl.stm32-stm32mp157c-bytedevkit-v1-3-1g_ram]

	1cc7589cd4f39a6782d0276c890521c53a4ef6099fde35c4edbad5370f090d2e

	U-Boot (1 GB)

	u-boot-stm32mp157c-bytedevkit-v1-3-1g_ram.img [https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/u-boot-stm32mp157c-bytedevkit-v1-3-1g_ram.img]

	aebe97b9be2c0862d4a9c9b156278325d70fe33fded7eb0b4bd51377835a3b64

Image

How do you flash the image?

Attention

	You need a microSD card with at least 8GB capacity.

	All existing data on the microSD card will be lost.

	Do not format the microSD card before flashing.

Windows

	Unzip the file bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz (e.g. with 7-zip)

	Write the resulting file to the microSD card with a tool like Roadkils Disk Image [https://www.roadkil.net/program.php?ProgramID=12]

Linux

gunzip -c bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz | dd of=/dev/mmcblk<X> bs=8M conv=fsync status=progress

Hint

To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz /dev/mmcblk<X>

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit-stm32mp1/4.0; cd ~/workdir/bytedevkit-stm32mp1/4.0
$ repo init -b kirkstone -u https://github.com/bytesatwork/bsp-platform-st.git
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT-stm32mp1:

$ cd ~/workdir/bytedevkit-stm32mp1/4.0
$ MACHINE=bytedevkit-stm32mp1 DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

The output is found in:

~/workdir/bytedevkit-stm32mp1/4.0/build/tmp/deploy/images/bytedevkit-stm32mp1

Hint

For additional information about yocto images and how to build them, please visit:
https://docs.yoctoproject.org/4.0.9/brief-yoctoprojectqs/index.html#building-your-image.

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

	Image size is too small

If you encounter that your image size is too small to install additional software,
please have a look at the IMAGE_ROOTFS_SIZE variable under
~/workdir/<machine-name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb.
Increase the size if necessary.

Toolchain

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is
a self-extracting shell script.

Hint

If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is executable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important

	The following tools need to be installed on your development system:
	
	xz (Debian package: xz-utils)

	python (any version)

	gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/4.0.9/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -mthumb -mfpu=neon-vfpv4 -mfloat-abi=hard -mcpu=cortex-a7 -fstack-protector-strong -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-security --sysroot=/opt/poky-bytesatwork/4.0.9/sysroots/cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

Crosscompile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

How to bring your binary to the target?

	Connect the embedded device’s ethernet to your LAN

	Determine the embedded target IP address by ip addr show

[image: ../../_images/ip_addr_show_28.png]

	Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/tmp

[image: ../../_images/scp2.png]

	Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

	Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytedevkit-stm32mp1/4.0
$ repo init -b kirkstone -u https://github.com/bytesatwork/bsp-platform-st.git
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT-stm32mp1:

$ cd ~/workdir/bytedevkit-stm32mp1/4.0
$ MACHINE=bytedevkit-stm32mp1 DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit-stm32mp1/4.0/build/tmp/deploy/sdk

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add additional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software components, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit:
https://docs.yoctoproject.org/4.0.9/overview-manual/concepts.html#cross-development-toolchain-generation.

Kernel

Download the Linux Kernel

	Device

	Branch

	git URL

	bytedevkit-stm32mp1

	baw-v5.10-stm32mp-r2

	https://github.com/bytesatwork/linux-stm32mp.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the
provided toolchain from Toolchain or any compatible toolchain (e.g.
from your distribution)

Important

	The following tools need to be installed on your development system:
	
	git

	make

	bc

Note

The following instructions assume, you installed the provided toolchain
for the respective target.

Important

	The following tools need to be installed on your development system:
	
	OpenSSL headers (Debian package: libssl-dev)

	depmod (Debian package: kmod)

	Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

	Source toolchain

source /opt/poky-bytesatwork/4.0.9/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

	Create defconfig

make multi_v7_defconfig
scripts/kconfig/merge_config.sh -m -r .config arch/arm/configs/fragment-*
make olddefconfig

	Build Linux kernel

make LOADADDR=0xC2000040 -j `nproc` uImage stm32mp157c-bytedevkit-v1-3.dtb modules

	Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary
files need to be installed on the target. This can be done either via
Ethernet (e.g. scp) or by copying the files to the SD card.

Note

For scp installation: Don’t forget to mount /boot on the target.

	File

	Target path

	Target partition

	arch/arm/boot/uImage

	/boot/uImage

	/dev/mmcblk0p4

	arch/arm/boot/dts/stm32mp157c-bytedevkit-v1-3.dtb

	/boot/stm32mp157c-bytedevkit-v1-3.dtb

	/dev/mmcblk0p4

Note

After installing a new kernel, it often fails to load modules, as the
signature of the kernel changed and it fails to find its corresponding modules
folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

Otherwise, please follow the instructions to copy the kernel modules

Hint

If you have a byteDEVKIT V1.1, replace v1-3 with v1-1 in the file names above.

	Install kernel modules

To copy all available modules to the target, it’s best to deploy them
locally first and then copy all modules to the target.

mkdir /tmp/bytedevkit-stm32mp1
make INSTALL_MOD_PATH=/tmp/bytedevkit-stm32mp1 modules_install

Now you can copy the content of the folder /tmp/bytedevkit-stm32mp1 into the
target’s root folder (/) which is partition /dev/mmcblk0p5.

U-Boot

Download U-Boot Source Code

	Device

	Branch

	git URL

	bytedevkit-stm32mp1

	baw-v2020.01-stm32mp-r1

	https://github.com/bytesatwork/u-boot-stm32mp

Build U-Boot

To compile U-Boot, an ARM toolchain is necessary. You can use the provided
toolchain from Toolchain or any compatible
toolchain (e.g. from your distribution)

Important

	The following tools need to be installed on your development system:
	
	git

	make

	bc

Note

The following instructions assume, you installed the provided toolchain
for the respective target.

	Download U-Boot sources

Download the appropriate U-Boot from Download U-Boot Source Code.

	Source toolchain

source /opt/poky-bytesatwork/4.0.9/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

	Create defconfig

make stm32mp157_bytedevkit_defconfig

Note

For the 1 GB RAM variant, use make stm32mp157_bytedevkit_1g_defconfig instead.

	Build U-Boot and SPL

make -j `nproc`

Install SPL and U-Boot

To use the newly created U-Boot, the necessary files need to be installed
on the SD card. This can be done either on the host or on the target.

	File

	Target partition

	u-boot-spl.stm32

	/dev/mmcblk0p1

	u-boot-spl.stm32

	/dev/mmcblk0p2

	u-boot.img

	/dev/mmcblk0p3

You need to write the files to the respective “raw” partition, either on the host
system or the target system:

dd if=u-boot-spl.stm32 of=/dev/mmcblk0p1
dd if=u-boot-spl.stm32 of=/dev/mmcblk0p2
dd if=u-boot.img of=/dev/mmcblk0p3

The next time the target is reset, it will start with the new U-Boot.

[image: ../../_images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg]

 Archive

Archive

Here you’ll find informations on older images and platforms.

Note

Information in this section is EOL and not supported anymore.

	byteDEVKIT-am335x (Yocto 3.1)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	byteDEVKIT-stm32mp1 (Yocto 3.1)
	Downloads
	SD card image

	Toolchain

	U-Boot

	Image
	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	U-Boot
	Download U-Boot

	Build U-Boot

	Install SPL and U-Boot

	byteDEVKIT-stm32mp1 (Yocto 3.2)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	U-Boot
	Download U-Boot

	Build U-Boot

	byteDEVKIT (Yocto 3.0)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	bytePANEL (Yocto 3.0)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	byteDEVKIT (Yocto 2.7)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

	bytePANEL (Yocto 2.7)
	Image
	Where do you get the SD card image?

	How do you flash the image?

	How do you build an image?
	How to modify the image

	How to rename the image

	Troubleshooting

	Toolchain
	Where do you get the toolchain?

	How do you install the toolchain?

	How do you use the toolchain?

	How to bring your binary to the target?

	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel

	Build the Linux Kernel

 byteDEVKIT-am335x (Yocto 3.1)

byteDEVKIT-am335x (Yocto 3.1)

Image

Where do you get the SD card image?

	Device

	Yocto Version

	Download

	Checksum (SHA256)

	bytedevkit-am335x

	Yocto 3.1.3

	bytesatwork-minimal-image-bytedevkit-am335x.wic.gz [https://download.bytesatwork.io/transfer/bytesatwork/m2/3.1.3/bytesatwork-minimal-image-bytedevkit-am335x.wic.gz]
(wic.bmap [https://download.bytesatwork.io/transfer/bytesatwork/m2/3.1.3/bytesatwork-minimal-image-bytedevkit-am335x.wic.bmap])

	d1429b5f68808450538d6354d7f40898828c73ef1079092d23663925dce79766

Hint

Updating from an older image?
You can update your older image by using: apt-get update and apt-get upgrade.

	check for new version in the table above

	edit /etc/apt/sources.list and point to the new package feed

	run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that
an incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

How do you flash the image?

Attention

	You need a microSD card with at least 8GB capacity.

	All existing data on the microSD card will be lost.

	Do not format the microSD card before flashing.

Windows

	Unzip the file bytesatwork-minimal-image-bytedevkit-am335x.wic.gz (e.g. with 7-zip)

	Write the resulting file to the microSD card with a tool like Roadkils Disk Image [https://www.roadkil.net/program.php?ProgramID=12]

Linux

gunzip -c bytesatwork-minimal-image-bytedevkit-am335x.wic.gz | dd of=/dev/mmcblk<X> bs=8M conv=fdatasync status=progress

Hint

To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytedevkit-am335x.wic.gz /dev/mmcblk<X>

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit-am335x/3.1; cd ~/workdir/bytedevkit-am335x/3.1
$ repo init -u https://github.com/bytesatwork/bsp-platform-ti.git -b dunfell
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT-am335x:

$ cd ~/workdir/bytedevkit-am335x/3.1
$ MACHINE=bytedevkit-am335x DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

The output is found in:

~/workdir/bytedevkit-am335x/3.1/build/tmp/deploy/images/bytedevkit-am335x

Hint

For additional information about yocto images and how to build them, please visit: https://www.yoctoproject.org/docs/3.1/mega-manual/mega-manual.html#brief-building-your-image

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/build/tmp/deploy/images/<machine name>
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

	Image size is too small

If you encounter that your image size is too small to install additional software,
please have a look at the IMAGE_ROOTFS_SIZE variable under
~/workdir/<machine-name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb.
Increase the size if necessary.

Toolchain

Where do you get the toolchain?

	Device

	Yocto Version

	Download

	Checksum (SHA256)

	bytedevkit-am335x

	Yocto 3.1.3

	poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-armv7at2hf-neon-bytedevkit-am335x-toolchain-3.1.3.sh [https://download.bytesatwork.io/transfer/bytesatwork/m2/3.1.3/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-armv7at2hf-neon-bytedevkit-am335x-toolchain-3.1.3.sh]

	8f36974f1635022a1744f0dfde9c3810fcd1a44422afdad0d3884b79a07aecf3

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is
a self-extracting shell script.

Hint

If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is executable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important

	The following tools need to be installed on your development system:
	
	xz (Debian package: xz-utils)

	python (any version)

	gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/3.1.3/environment-setup-armv7at2hf-neon-poky-linux-gnueabi

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -march=armv7-a -mthumb -mfpu=neon -mfloat-abi=hard -fstack-protector-strong -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-security --sysroot=/opt/poky-bytesatwork/3.1.3/sysroots/armv7at2hf-neon-poky-linux-gnueabi

Crosscompile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

How to bring your binary to the target?

	Connect the embedded device’s ethernet to your LAN

	Determine the embedded target IP address by ip addr show

[image: ../../_images/ip_addr_show_28.png]

	Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/tmp

[image: ../../_images/scp2.png]

	Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

	Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytedevkit-am335x/3.1
$ repo init -u https://github.com/bytesatwork/bsp-platform-ti.git -b dunfell
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT-am335x:

$ cd ~/workdir/bytedevkit-am335x/3.1
$ MACHINE=bytedevkit-am335x DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit-am335x/3.1/build/tmp/deploy/sdk

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add additional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software components, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit: https://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#cross-development-toolchain-generation

Kernel

Download the Linux Kernel

	Device

	Branch

	git URL

	bytedevkit-am335x

	baw-ti-linux-5.4.y

	https://github.com/bytesatwork/ti-linux-kernel

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the
provided toolchain from Where do you get the toolchain? or any compatible toolchain (e.g.
from your distribution)

Important

	The following tools need to be installed on your development system:
	
	git

	make

	bc

Note

The following instructions assume, you installed the provided toolchain
for the respective target.

Important

	The following tools need to be installed on your development system:
	
	OpenSSL headers (Debian package: libssl-dev)

	depmod (Debian package: kmod)

	mkimage (Debian package: u-boot-tools)

	Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

	Source toolchain

source /opt/poky-bytesatwork/3.1.3/environment-setup-armv7at2hf-neon-poky-linux-gnueabi

	Create defconfig

make multi_v7_defconfig

	Build Linux kernel

make LOADADDR=0x80008000 -j `nproc` uImage am335x-bytedevkit.dtb modules

	Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary
files need to be installed on the target. This can be done either via
Ethernet (e.g. scp) or by copying the files to the SD card.

Note

For scp installation: Don’t forget to mount /boot on the target.

	File

	Target path

	Target partition

	arch/arm/boot/uImage

	/boot/uImage

	/dev/mmcblk0p4

	arch/arm/boot/dts/am335x-bytedevkit.dtb

	/boot/am335x-bytedevkit.dtb

	/dev/mmcblk0p4

Note

After installing a new kernel, it often fails to load modules, as the
signature of the kernel changed and it fails to find its corresponding modules
folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

Otherwise, please follow the instructions to copy the kernel modules

	Install kernel modules

To copy all available modules to the target, it’s best to deploy them
locally first and then copy all modules to the target.

mkdir /tmp/bytedevkit-am335x
make INSTALL_MOD_PATH=/tmp/bytedevkit-am335x modules_install

Now you can copy the content of the folder /tmp/bytedevkit-am335x into the
target’s root folder (/) which is partition /dev/mmcblk0p5.

[image: ../../_images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg]

 byteDEVKIT-stm32mp1 (Yocto 3.1)

byteDEVKIT-stm32mp1 (Yocto 3.1)

Downloads

SD card image

	Download

	Checksum (SHA256)

	bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz [https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz]
(wic.bmap [https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.bmap])

	6fa368ff5df6967480f3704c1a9e987f284fa0f8b78ec679c57be9f74e4520f7

Hint

Updating from an older image?
You can update your older image by using: apt-get update and apt-get upgrade.

	check for new version in the table above

	edit /etc/apt/sources.list and point to the new package feed

	run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that
an incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

Toolchain

	Download

	Checksum (SHA256)

	poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-toolchain-3.1.11.sh [https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-toolchain-3.1.11.sh]

	41e304ec75a26d3bcac7d1f9f2cb72fc07e6002d97f7de45f65ef36baf71f450

U-Boot

Note

The images come with a preinstalled U-Boot that supports 512 MB of RAM.
If you have a module with 1 GB of RAM, you will have to
Install SPL and U-Boot to unlock the full
1 GB of RAM.

	Description

	Download

	Checksum (SHA256)

	MLO (512 MB)

	u-boot-spl.stm32-stm32mp157c-bytedevkit-basic [https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/u-boot-spl.stm32-stm32mp157c-bytedevkit-basic]

	ffc3c38e453f7b8760b4edfabd0e6aa0c55fb3e386d8a5a80b90e3a12d0e900d

	U-Boot (512 MB)

	u-boot-stm32mp157c-bytedevkit-basic.img [https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/u-boot-stm32mp157c-bytedevkit-basic.img]

	c0fe5de015ceefa8b3e9a761007523b33fb0e0dddda9ee39d7c3d55382a13ccb

	MLO (1 GB)

	u-boot-spl.stm32-stm32mp157c-bytedevkit-1g_ram [https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/u-boot-spl.stm32-stm32mp157c-bytedevkit-1g_ram]

	99b88a246879e704f92a4f934a9641db8cf64262033e81dbc69b73b6bdba1d20

	U-Boot (1 GB)

	u-boot-stm32mp157c-bytedevkit-1g_ram.img [https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/u-boot-stm32mp157c-bytedevkit-1g_ram.img]

	8fa044532a61bfe82621bafad4b640710cb5406bc280f43e026a4709d269cb45

Image

How do you flash the image?

Attention

	You need a microSD card with at least 8GB capacity.

	All existing data on the microSD card will be lost.

	Do not format the microSD card before flashing.

Windows

	Unzip the file bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz (e.g. with 7-zip)

	Write the resulting file to the microSD card with a tool like Roadkils Disk Image [https://www.roadkil.net/program.php?ProgramID=12]

Linux

gunzip -c bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz | dd of=/dev/mmcblk<X> bs=8M conv=fdatasync status=progress

Hint

To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz /dev/mmcblk<X>

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit-stm32mp1/3.1; cd ~/workdir/bytedevkit-stm32mp1/3.1
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b dunfell
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT-stm32mp1:

$ cd ~/workdir/bytedevkit-stm32mp1/3.1
$ MACHINE=bytedevkit-stm32mp1 DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

The output is found in:

~/workdir/bytedevkit-stm32mp1/3.1/build/tmp/deploy/images/bytedevkit-stm32mp1

Hint

For additional information about yocto images and how to build them, please visit:
https://docs.yoctoproject.org/3.1.11/brief-yoctoprojectqs/brief-yoctoprojectqs.html#building-your-image.

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/build/tmp/deploy/images/<machine name>
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

	Image size is too small

If you encounter that your image size is too small to install additional software,
please have a look at the IMAGE_ROOTFS_SIZE variable under
~/workdir/<machine-name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb.
Increase the size if necessary.

Toolchain

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is
a self-extracting shell script.

Hint

If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is executable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important

	The following tools need to be installed on your development system:
	
	xz (Debian package: xz-utils)

	python (any version)

	gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/3.1.11/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -mthumb -mfpu=neon-vfpv4 -mfloat-abi=hard -mcpu=cortex-a7 -fstack-protector-strong -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-security --sysroot=/opt/poky-bytesatwork/3.1.11/sysroots/cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

Crosscompile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

How to bring your binary to the target?

	Connect the embedded device’s ethernet to your LAN

	Determine the embedded target IP address by ip addr show

[image: ../../_images/ip_addr_show_28.png]

	Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/tmp

[image: ../../_images/scp2.png]

	Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

	Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytedevkit-stm32mp1/3.1
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b dunfell
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT-stm32mp1:

$ cd ~/workdir/bytedevkit-stm32mp1/3.1
$ MACHINE=bytedevkit-stm32mp1 DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit-stm32mp1/3.1/build/tmp/deploy/sdk

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add additional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software components, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit:
https://docs.yoctoproject.org/3.1.11/overview-manual/overview-manual-concepts.html#cross-development-toolchain-generation.

Kernel

Download the Linux Kernel

	Device

	Branch

	git URL

	bytedevkit-stm32mp1

	baw-v5.10-stm32mp-r1

	https://github.com/bytesatwork/linux-stm32mp.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the
provided toolchain from Toolchain or any compatible toolchain (e.g.
from your distribution)

Important

	The following tools need to be installed on your development system:
	
	git

	make

	bc

Note

The following instructions assume, you installed the provided toolchain
for the respective target.

Important

	The following tools need to be installed on your development system:
	
	OpenSSL headers (Debian package: libssl-dev)

	depmod (Debian package: kmod)

	Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

	Source toolchain

source /opt/poky-bytesatwork/3.1.11/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

	Create defconfig

make multi_v7_defconfig
scripts/kconfig/merge_config.sh -m -r .config arch/arm/configs/fragment-*
make olddefconfig

	Build Linux kernel

make LOADADDR=0xC2000040 -j `nproc` uImage stm32mp157c-bytedevkit.dtb modules

	Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary
files need to be installed on the target. This can be done either via
Ethernet (e.g. scp) or by copying the files to the SD card.

Note

For scp installation: Don’t forget to mount /boot on the target.

	File

	Target path

	Target partition

	arch/arm/boot/uImage

	/boot/uImage

	/dev/mmcblk0p4

	arch/arm/boot/dts/stm32mp157c-bytedevkit.dtb

	/boot/stm32mp157c-bytedevkit.dtb

	/dev/mmcblk0p4

Note

After installing a new kernel, it often fails to load modules, as the
signature of the kernel changed and it fails to find its corresponding modules
folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

Otherwise, please follow the instructions to copy the kernel modules

	Install kernel modules

To copy all available modules to the target, it’s best to deploy them
locally first and then copy all modules to the target.

mkdir /tmp/bytedevkit-stm32mp1
make INSTALL_MOD_PATH=/tmp/bytedevkit-stm32mp1 modules_install

Now you can copy the content of the folder /tmp/bytedevkit-stm32mp1 into the
target’s root folder (/) which is partition /dev/mmcblk0p5.

U-Boot

Download U-Boot

	Device

	Branch

	git URL

	bytedevkit-stm32mp1

	baw-v2020.01-stm32mp-r1

	https://github.com/bytesatwork/u-boot-stm32mp

Build U-Boot

To compile U-Boot, an ARM toolchain is necessary. You can use the provided
toolchain from Toolchain or any compatible
toolchain (e.g. from your distribution)

Important

	The following tools need to be installed on your development system:
	
	git

	make

	bc

Note

The following instructions assume, you installed the provided toolchain
for the respective target.

	Download U-Boot sources

Download the appropriate U-Boot from Download U-Boot.

	Source toolchain

source /opt/poky-bytesatwork/3.1.11/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

	Create defconfig

make stm32mp157_bytedevkit_defconfig

Note

For the 1 GB RAM variant, use make stm32mp157_bytedevkit_1g_defconfig instead.

	Build U-Boot and SPL

make -j `nproc`

Install SPL and U-Boot

To use the newly created U-Boot, the necessary files need to be installed
on the SD card. This can be done either on the host or on the target.

	File

	Target partition

	u-boot-spl.stm32

	/dev/mmcblk0p1

	u-boot-spl.stm32

	/dev/mmcblk0p2

	u-boot.img

	/dev/mmcblk0p3

You need to write the to the respective “raw” partition, either on the host
system or the target system:

dd if=u-boot-spl.stm32 of=/dev/mmcblk0p1
dd if=u-boot-spl.stm32 of=/dev/mmcblk0p2
dd if=u-boot.img of=/dev/mmcblk0p3

The next time the target is reset, it will start with the new U-Boot.

[image: ../../_images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg]

 byteDEVKIT-stm32mp1 (Yocto 3.2)

byteDEVKIT-stm32mp1 (Yocto 3.2)

Image

Where do you get the SD card image?

	Device

	Yocto Version

	Download

	Checksum (SHA256)

	bytedevkit-stm32mp1

	Yocto 3.2.2

	bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz [https://download.bytesatwork.io/transfer/bytesatwork/m5/3.2.2/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz]
(wic.bmap [https://download.bytesatwork.io/transfer/bytesatwork/m5/3.2.2/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.bmap])

	efc3ed1e56d5c017c7e72549fab30d9909ce24e63c8b0192a8a535af6c5d6a45

Hint

Updating from an older image?
You can update your older image by using: apt-get update and apt-get upgrade.

	check for new version in the table above

	edit /etc/apt/sources.list and point to the new package feed

	run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that
an incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

How do you flash the image?

Attention

	You need a microSD card with at least 8GB capacity.

	All existing data on the microSD card will be lost.

	Do not format the microSD card before flashing.

Windows

	Unzip the file bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz (e.g. with 7-zip)

	Write the resulting file to the microSD card with a tool like Roadkils Disk Image [https://www.roadkil.net/program.php?ProgramID=12]

Linux

gunzip -c bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz | dd of=/dev/mmcblk<X> bs=8M conv=fdatasync status=progress

Hint

To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz /dev/mmcblk<X>

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit-stm32mp1/3.2; cd ~/workdir/bytedevkit-stm32mp1/3.2
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b gatesgarth
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT-stm32mp1:

$ cd ~/workdir/bytedevkit-stm32mp1/3.2
$ MACHINE=bytedevkit-stm32mp1 DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

The output is found in:

~/workdir/bytedevkit-stm32mp1/3.2/build/tmp/deploy/images/bytedevkit-stm32mp1

Hint

For additional information about yocto images and how to build them, please visit: https://docs.yoctoproject.org/3.2.2/singleindex.html#building-your-image

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/build/tmp/deploy/images/<machine name>
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

	Image size is too small

If you encounter that your image size is too small to install additional software,
please have a look at the IMAGE_ROOTFS_SIZE variable under
~/workdir/<machine-name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb.
Increase the size if necessary.

Toolchain

Where do you get the toolchain?

	Device

	Yocto Version

	Download

	Checksum (SHA256)

	bytedevkit-stm32mp1

	Yocto 3.2.2

	poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-toolchain-3.2.2.sh [https://download.bytesatwork.io/transfer/bytesatwork/m5/3.2.2/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-toolchain-3.2.2.sh]

	8f8fc481de6d891392a3b3e5edbfcee58788a47366f4581929623126df510e3f

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is
a self-extracting shell script.

Hint

If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is executable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important

	The following tools need to be installed on your development system:
	
	xz (Debian package: xz-utils)

	python (any version)

	gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/3.2.2/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -mthumb -mfpu=neon-vfpv4 -mfloat-abi=hard -mcpu=cortex-a7 -fstack-protector-strong -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-security --sysroot=/opt/poky-bytesatwork/3.2.2/sysroots/cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

Crosscompile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

How to bring your binary to the target?

	Connect the embedded device’s ethernet to your LAN

	Determine the embedded target IP address by ip addr show

[image: ../../_images/ip_addr_show_28.png]

	Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/tmp

[image: ../../_images/scp2.png]

	Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

	Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytedevkit-stm32mp1/3.2
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b gatesgarth
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT-stm32mp1:

$ cd ~/workdir/bytedevkit-stm32mp1/3.2
$ MACHINE=bytedevkit-stm32mp1 DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit-stm32mp1/3.2/build/tmp/deploy/sdk

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add additional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software components, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit: https://docs.yoctoproject.org/3.2.2/overview-manual/overview-manual-concepts.html#cross-development-toolchain-generation

Kernel

Download the Linux Kernel

	Device

	Branch

	git URL

	bytedevkit-stm32mp1

	baw-v5.4-stm32mp-r2

	https://github.com/bytesatwork/linux-stm32mp.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the
provided toolchain from Where do you get the toolchain? or any compatible toolchain (e.g.
from your distribution)

Important

	The following tools need to be installed on your development system:
	
	git

	make

	bc

Note

The following instructions assume, you installed the provided toolchain
for the respective target.

Important

	The following tools need to be installed on your development system:
	
	OpenSSL headers (Debian package: libssl-dev)

	depmod (Debian package: kmod)

	Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

	Source toolchain

source /opt/poky-bytesatwork/3.2.2/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

	Create defconfig

make multi_v7_defconfig
scripts/kconfig/merge_config.sh -m -r .config arch/arm/configs/fragment-*
make olddefconfig

	Build Linux kernel

make LOADADDR=0xC2000040 -j `nproc` uImage stm32mp157c-bytedevkit.dtb modules

	Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary
files need to be installed on the target. This can be done either via
Ethernet (e.g. scp) or by copying the files to the SD card.

Note

For scp installation: Don’t forget to mount /boot on the target.

	File

	Target path

	Target partition

	arch/arm/boot/uImage

	/boot/uImage

	/dev/mmcblk0p4

	arch/arm/boot/dts/stm32mp157c-bytedevkit.dtb

	/boot/stm32mp157c-bytedevkit.dtb

	/dev/mmcblk0p4

Note

After installing a new kernel, it often fails to load modules, as the
signature of the kernel changed and it fails to find its corresponding modules
folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

Otherwise, please follow the instructions to copy the kernel modules

	Install kernel modules

To copy all available modules to the target, it’s best to deploy them
locally first and then copy all modules to the target.

mkdir /tmp/bytedevkit-stm32mp1
make INSTALL_MOD_PATH=/tmp/bytedevkit-stm32mp1 modules_install

Now you can copy the content of the folder /tmp/bytedevkit-stm32mp1 into the
target’s root folder (/) which is partition /dev/mmcblk0p5.

U-Boot

Download U-Boot

	Device

	Branch

	git URL

	bytedevkit-stm32mp1

	baw-v2020.01-stm32mp-r2

	https://github.com/bytesatwork/u-boot-stm32mp

Build U-Boot

To compile U-Boot, an ARM toolchain is necessary. You can use the provided
toolchain from Where do you get the toolchain? or any compatible
toolchain (e.g. from your distribution)

Important

	The following tools need to be installed on your development system:
	
	git

	make

	bc

Note

The following instructions assume, you installed the provided toolchain
for the respective target.

	Download U-Boot sources

Download the appropriate U-Boot from Download U-Boot.

	Source toolchain

source /opt/poky-bytesatwork/3.2.2/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

	Create defconfig

make stm32mp157_bytedevkit_defconfig

Note

For the 1 GB RAM variant, use make stm32mp157_bytedevkit_1g_defconfig instead.

	Build U-Boot and SPL

make -j `nproc`

	Install SPL and U-Boot

To use the newly created U-Boot, the necessary files need to be installed
on the SD card. This can be done either on the host or on the target.

	File

	Target partition

	u-boot-spl.stm32

	/dev/mmcblk0p1

	u-boot-spl.stm32

	/dev/mmcblk0p2

	u-boot.img

	/dev/mmcblk0p3

You need to write the to the respective “raw” partition, either on the host
system or the target system:

dd if=u-boot-spl.stm32 of=/dev/mmcblk0p1
dd if=u-boot-spl.stm32 of=/dev/mmcblk0p2
dd if=u-boot.img of=/dev/mmcblk0p3

The next time the target is reset, it will start with the new U-Boot.

[image: ../../_images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg]

 byteDEVKIT (Yocto 3.0)

byteDEVKIT (Yocto 3.0)

Image

Where do you get the SD card image?

	Device

	Yocto Version

	Download

	Checksum (SHA256)

	byteDEVKIT

	Yocto 3.0.3

	bytesatwork-minimal-image-bytedevkit.wic.gz [https://download.bytesatwork.io/transfer/bytesatwork/m5/3.0.3/bytesatwork-minimal-image-bytedevkit.wic.gz]
(wic.bmap [https://download.bytesatwork.io/transfer/bytesatwork/m5/3.0.3/bytesatwork-minimal-image-bytedevkit.wic.bmap])

	1c1d442ef80de24f3bb02704880cf8c2124c88008aefca0264bf5850bdf7b54b

Hint

Updating from an older image?
You can update your older image by using: apt-get update and apt-get upgrade.

	check for new version in the table above

	edit /etc/apt/sources.list and point to the new package feed

	run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that
an incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

How do you flash the image?

Attention

	You need a microSD card with at least 8GB capacity.

	All existing data on the microSD card will be lost.

	Do not format the microSD card before flashing.

Windows

	Unzip the file bytesatwork-minimal-image-bytedevkit.wic.gz (e.g. with 7-zip)

	Write the resulting file to the microSD card with a tool like Roadkils Disk Image [https://www.roadkil.net/program.php?ProgramID=12]

Linux

gunzip -c bytesatwork-minimal-image-bytedevkit.wic.gz | dd of=/dev/mmcblk<X> bs=8M conv=fdatasync status=progress

Hint

To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytedevkit.wic.gz /dev/mmcblk<X>

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit/3.0; cd ~/workdir/bytedevkit/3.0
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b zeus
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT:

$ cd ~/workdir/bytedevkit/3.0
$ MACHINE=bytedevkit DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

The output is found in:

~/workdir/bytedevkit/3.0/build/tmp/deploy/images/bytedevkit

Hint

For additional information about yocto images and how to build them, please visit: https://www.yoctoproject.org/docs/3.0/mega-manual/mega-manual.html#brief-building-your-image

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/build/tmp/deploy/images/<machine name>
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

	Image size is too small

If you encounter that your image size is too small to install additional software,
please have a look at the IMAGE_ROOTFS_SIZE variable under
~/workdir/<machine-name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb.
Increase the size if necessary.

Toolchain

Where do you get the toolchain?

	Device

	Yocto Version

	Download

	Checksum (SHA256)

	byteDEVKIT

	Yocto 3.0.3

	poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-toolchain-3.0.3.sh [https://download.bytesatwork.io/transfer/bytesatwork/m5/3.0.3/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-toolchain-3.0.3.sh]

	fe182429d8bf6d91ca2a556452894612b273141fd168af5bdf0add9be7c0573c

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is
a self-extracting shell script.

Hint

If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is executable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important

	The following tools need to be installed on your development system:
	
	xz (Debian package: xz-utils)

	python (any version)

	gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/3.0.3/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -mthumb -mfpu=neon-vfpv4 -mfloat-abi=hard -mcpu=cortex-a7 -fstack-protector-strong -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-security --sysroot=/opt/poky-bytesatwork/3.0.3/sysroots/cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

Crosscompile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

How to bring your binary to the target?

	Connect the embedded device’s ethernet to your LAN

	Determine the embedded target IP address by ip addr show

[image: ../../_images/ip_addr_show_28.png]

	Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/tmp

[image: ../../_images/scp2.png]

	Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

	Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytedevkit/3.0
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b zeus
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT:

$ cd ~/workdir/bytedevkit/3.0
$ MACHINE=bytedevkit DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit/3.0/build/tmp/deploy/sdk

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add additional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software components, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit: https://www.yoctoproject.org/docs/3.0.3/overview-manual/overview-manual.html#cross-development-toolchain-generation

Kernel

Download the Linux Kernel

	Device

	Branch

	git URL

	byteDEVKIT

	baw-v4.19-stm32mp

	https://github.com/bytesatwork/linux-stm32mp.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the
provided toolchain from Where do you get the toolchain? or any compatible toolchain (e.g.
from your distribution)

Important

	The following tools need to be installed on your development system:
	
	git

	make

	bc

Note

The following instructions assume, you installed the provided toolchain
for the respective target.

Important

	The following tools need to be installed on your development system:
	
	OpenSSL headers (Debian package: libssl-dev)

	depmod (Debian package: kmod)

	Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

	Source toolchain

source /opt/poky-bytesatwork/3.0.3/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

	Create defconfig

make multi_v7_defconfig
scripts/kconfig/merge_config.sh -m -r .config arch/arm/configs/fragment-*
make olddefconfig

	Build Linux kernel

make LOADADDR=0xC2000040 -j `nproc` uImage stm32mp157c-bytedevkit-v1-1.dtb modules

	Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary
files need to be installed on the target. This can be done either via
Ethernet (e.g. scp) or by copying the files to the SD card.

Note

For scp installation: Don’t forget to mount /boot on the target.

	File

	Target path

	Target partition

	arch/arm/boot/uImage

	/boot/uImage

	/dev/mmcblk0p4

	arch/arm/boot/dts/stm32mp157c-bytedevkit-v1-1.dtb

	/boot/stm32mp157c-bytedevkit.dtb

	/dev/mmcblk0p4

Note

After installing a new kernel, it often fails to load modules, as the
signature of the kernel changed and it fails to find its corresponding modules
folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

Otherwise, please follow the instructions to copy the kernel modules

	Install kernel modules

To copy all available modules to the target, it’s best to deploy them
locally first and then copy all modules to the target.

mkdir /tmp/bytedevkit
make INSTALL_MOD_PATH=/tmp/bytedevkit modules_install

Now you can copy the content of the folder /tmp/bytedevkit into the
target’s root folder (/) which is partition /dev/mmcblk0p5.

[image: ../../_images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg]

 bytePANEL (Yocto 3.0)

bytePANEL (Yocto 3.0)

Image

Where do you get the SD card image?

	Device

	Yocto Version

	Download

	Checksum (SHA256)

	bytePANEL

	Yocto 3.0

	bytesatwork-minimal-image-bytepanel-emmc.wic.gz [https://download.bytesatwork.io/transfer/bytesatwork/m2/3.0/bytesatwork-minimal-image-bytepanel-emmc.wic.gz]
(wic.bmap [https://download.bytesatwork.io/transfer/bytesatwork/m2/3.0/bytesatwork-minimal-image-bytepanel-emmc.wic.bmap])

	e3e166f28fb815b09c6372bbcae4b4c8fcd00f93e57e96084bdee90c255764d9

Hint

Updating from an older image?
You can update your older image by using: apt-get update and apt-get upgrade.

	check for new version in the table above

	edit /etc/apt/sources.list and point to the new package feed

	run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that
an incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

How do you flash the image?

Attention

	You need a microSD card with at least 8GB capacity.

	All existing data on the microSD card will be lost.

	Do not format the microSD card before flashing.

Windows

	Unzip the file bytesatwork-minimal-image-bytepanel-emmc.wic.gz (e.g. with 7-zip)

	Write the resulting file to the microSD card with a tool like Roadkils Disk Image [https://www.roadkil.net/program.php?ProgramID=12]

Linux

gunzip -c bytesatwork-minimal-image-bytepanel-emmc.wic.gz | dd of=/dev/mmcblk<X> bs=8M conv=fdatasync status=progress

Hint

To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytepanel-emmc.wic.gz /dev/mmcblk<X>

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytepanel/3.0; cd ~/workdir/bytepanel/3.0
$ repo init -u https://github.com/bytesatwork/bsp-platform-ti.git -b zeus
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for bytePANEL:

$ cd ~/workdir/bytepanel/3.0
$ MACHINE=bytepanel DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

The output is found in:

~/workdir/bytepanel/3.0/build/tmp/deploy/images/bytepanel

Hint

For additional information about yocto images and how to build them, please visit: https://www.yoctoproject.org/docs/3.0/mega-manual/mega-manual.html#brief-building-your-image

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/build/tmp/deploy/images/<machine name>
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

	Image size is too small

If you encounter that your image size is too small to install additional software,
please have a look at the IMAGE_ROOTFS_SIZE variable under
~/workdir/<machine-name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb.
Increase the size if necessary.

Toolchain

Where do you get the toolchain?

	Device

	Yocto Version

	Download

	Checksum (SHA256)

	bytePANEL

	Yocto 3.0

	poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-armv7at2hf-neon-bytepanel-emmc-toolchain-3.0.2.sh [https://download.bytesatwork.io/transfer/bytesatwork/m2/3.0/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-armv7at2hf-neon-bytepanel-emmc-toolchain-3.0.2.sh]

	a90763d7ff408e9e5f0556b051eccd3ea85c43406099c9a61d98a32e6a04e078

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is
a self-extracting shell script.

Hint

If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is executable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important

	The following tools need to be installed on your development system:
	
	xz (Debian package: xz-utils)

	python (any version)

	gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/3.0.2/environment-setup-armv7at2hf-neon-poky-linux-gnueabi

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -march=armv7-a -mthumb -mfpu=neon -mfloat-abi=hard --sysroot=/opt/poky-bytesatwork/3.0.2/sysroots/armv7at2hf-neon-poky-linux-gnueabi

Cross-compile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

How to bring your binary to the target?

	Connect the embedded device’s ethernet to your LAN

	Determine the embedded target IP address by ip addr show

[image: ../../_images/ip_addr_show_28.png]

	Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/tmp

[image: ../../_images/scp2.png]

	Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

	Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytepanel/3.0
$ repo init -u https://github.com/bytesatwork/bsp-platform-ti.git -b zeus
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for bytePANEL:

$ cd ~/workdir/bytepanel/3.0
$ MACHINE=bytepanel DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytepanel/3.0/build/tmp/deploy/sdk

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add additional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software components, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit: https://www.yoctoproject.org/docs/3.0.3/overview-manual/overview-manual.html#cross-development-toolchain-generation

Kernel

Download the Linux Kernel

	Device

	Branch

	git URL

	bytePANEL

	baw-ti-linux-4.19.y

	https://github.com/bytesatwork/ti-linux-kernel.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the
provided toolchain from Where do you get the toolchain? or any compatible toolchain (e.g.
from your distribution)

Important

	The following tools need to be installed on your development system:
	
	git

	make

	bc

Note

The following instructions assume, you installed the provided toolchain
for the respective target.

Important

	The following tools need to be installed on your development system:
	
	u-boot-tools

	Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

	Source toolchain

source /opt/poky-bytesatwork/3.0.2/environment-setup-armv7at2hf-neon-poky-linux-gnueabi

	Create defconfig

make bytepanel_defconfig

	Build Linux kernel

make LOADADDR=0x80008000 -j `nproc` uImage bytepanel.dtb

	Install kernel and device tree

To use the newly created kernel and device tree, the necessary
files need to be installed on the target. This can be done either via
Ethernet (e.g. scp) or by copying the files to the SD card.

Note

For scp installation: Don’t forget to mount /boot on the target.

	File

	Target path

	Target partition

	arch/arm/boot/uImage

	/boot/uImage

	/dev/mmcblk0p1

	arch/arm/boot/dts/bytepanel.dtb

	/boot/devtree.dtb

	/dev/mmcblk0p1

[image: ../../_images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg]

 byteDEVKIT (Yocto 2.7)

byteDEVKIT (Yocto 2.7)

Image

Where do you get the SD card image?

	Device

	Yocto Version

	Download

	Checksum (SHA256)

	byteDEVKIT

	Yocto 2.7

	flashlayout_bytesatwork-minimal-image_FlashLayout_sdcard_stm32mp157c-bytedevkit.raw.gz [https://download.bytesatwork.io/transfer/bytesatwork/m5/2.7/flashlayout_bytesatwork-minimal-image_FlashLayout_sdcard_stm32mp157c-bytedevkit.raw.gz]

	7e62644473c21d200603b52d0080894a0ccfd950dd4a2f3c7df2b14753566de8

Hint

Updating from an older image?
You can update your older image by using: apt-get update and apt-get upgrade.

	check for new version in the table above

	edit /etc/apt/sources.list and point to the new package feed

	run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that
an incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

How do you flash the image?

Attention

	You need a microSD card with at least 8GB capacity.

	All existing data on the microSD card will be lost.

	Do not format the microSD card before flashing.

Windows

	Unzip the file flashlayout_bytesatwork-minimal-image_FlashLayout_sdcard_stm32mp157c-bytedevkit.raw.gz (e.g. with 7-zip)

	Write the resulting file to the microSD card with a tool like Roadkils Disk Image [https://www.roadkil.net/program.php?ProgramID=12]

Linux

gunzip -c flashlayout_bytesatwork-minimal-image_FlashLayout_sdcard_stm32mp157c-bytedevkit.raw.gz | dd of=/dev/mmcblk<X> bs=8M conv=fdatasync status=progress

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit/2.7; cd ~/workdir/bytedevkit/2.7
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b warrior
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT:

$ cd ~/workdir/bytedevkit/2.7
$ MACHINE=bytedevkit DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake devbase-image-bytesatwork

The output is found in:

~/workdir/bytedevkit/2.7/build/tmp/deploy/images/bytedevkit

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/build/tmp/deploy/images/<machine name>
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

	Image size is too small

If you encounter that your image size is too small to install additional software,
please have a look at the IMAGE_ROOTFS_SIZE variable under
~/workdir/<machine-name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb.
Increase the size if necessary.

Toolchain

Where do you get the toolchain?

	Device

	Yocto Version

	Download

	Checksum (SHA256)

	byteDEVKIT

	Yocto 2.7

	poky-bytesatwork-glibc-x86_64-devbase-image-bytesatwork-cortexa7t2hf-neon-vfpv4-bytedevkit-toolchain-2.7.1.sh [https://download.bytesatwork.io/transfer/bytesatwork/poky-bytesatwork-glibc-x86_64-devbase-image-bytesatwork-cortexa7t2hf-neon-vfpv4-bytedevkit-toolchain-2.7.1.sh]

	61896873ac7c75ac711a0b8e439ded6721d1a794deec26b4903178efbf51d307

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is
a self-extracting shell script.

Hint

If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is executable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important

	The following tools need to be installed on your development system:
	
	xz (Debian package: xz-utils)

	python (any version)

	gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/3.0.3/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -mthumb -mfpu=neon-vfpv4 -mfloat-abi=hard -mcpu=cortex-a7 -fstack-protector-strong -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-security --sysroot=/opt/poky-bytesatwork/3.0.3/sysroots/cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

Crosscompile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

How to bring your binary to the target?

	Connect the embedded device’s ethernet to your LAN

	Determine the embedded target IP address by ip addr show

[image: ../../_images/ip_addr_show_28.png]

	Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/tmp

[image: ../../_images/scp2.png]

	Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

	Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytedevkit/2.7
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b warrior
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for byteDEVKIT:

$ ~/workdir/bytedevkit/2.7
$ MACHINE=bytedevkit DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake devbase-image-bytesatwork -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit/2.7/build/tmp/deploy/sdk

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add additional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software components, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit: https://www.yoctoproject.org/docs/2.7.2/overview-manual/overview-manual.html#cross-development-toolchain-generation

Kernel

Download the Linux Kernel

	Device

	Branch

	git URL

	byteDEVKIT

	baw-v4.19-stm32mp

	https://github.com/bytesatwork/linux-stm32mp.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the
provided toolchain from Where do you get the toolchain? or any compatible toolchain (e.g.
from your distribution)

Important

	The following tools need to be installed on your development system:
	
	git

	make

	bc

Note

The following instructions assume, you installed the provided toolchain
for the respective target.

Important

	The following tools need to be installed on your development system:
	
	OpenSSL headers (Debian package: libssl-dev)

	depmod (Debian package: kmod)

	Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

	Source toolchain

source /opt/poky-bytesatwork/3.0.3/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-gnueabi

	Create defconfig

make multi_v7_defconfig
scripts/kconfig/merge_config.sh -m -r .config arch/arm/configs/fragment-*
make olddefconfig

	Build Linux kernel

make LOADADDR=0xC2000040 -j `nproc` uImage stm32mp157c-bytedevkit-v1-1.dtb modules

	Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary
files need to be installed on the target. This can be done either via
Ethernet (e.g. scp) or by copying the files to the SD card.

Note

For scp installation: Don’t forget to mount /boot on the target.

	File

	Target path

	Target partition

	arch/arm/boot/uImage

	/boot/uImage

	/dev/mmcblk0p4

	arch/arm/boot/dts/stm32mp157c-bytedevkit-v1-1.dtb

	/boot/stm32mp157c-bytedevkit.dtb

	/dev/mmcblk0p4

Note

After installing a new kernel, it often fails to load modules, as the
signature of the kernel changed and it fails to find its corresponding modules
folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

Otherwise, please follow the instructions to copy the kernel modules

	Install kernel modules

To copy all available modules to the target, it’s best to deploy them
locally first and then copy all modules to the target.

mkdir /tmp/bytedevkit
make INSTALL_MOD_PATH=/tmp/bytedevkit modules_install

Now you can copy the content of the folder /tmp/bytedevkit into the
target’s root folder (/) which is partition /dev/mmcblk0p5.

[image: ../../_images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg]

 bytePANEL (Yocto 2.7)

bytePANEL (Yocto 2.7)

Image

Where do you get the SD card image?

	Device

	Yocto Version

	Download

	Checksum (SHA256)

	bytePANEL

	Yocto 2.7

	devbase-image-bytesatwork-bytepanel-emmc-20190729194430.sdimg.gz [https://download.bytesatwork.io/transfer/bytesatwork/m2/2.7/devbase-image-bytesatwork-bytepanel-emmc-20190729194430.sdimg.gz]

	3b3e51d83c68f68d6ebbc2983d6b41b9e21d4878c1c9570804e6949624d7a41e

Hint

Updating from an older image?
You can update your older image by using: apt-get update and apt-get upgrade.

	check for new version in the table above

	edit /etc/apt/sources.list and point to the new package feed

	run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that
an incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

How do you flash the image?

Attention

	You need a microSD card with at least 8GB capacity.

	All existing data on the microSD card will be lost.

	Do not format the microSD card before flashing.

Windows

	Unzip the file devbase-image-bytesatwork-bytepanel-emmc-20190729194430.sdimg.gz (e.g. with 7-zip)

	Write the resulting file to the microSD card with a tool like Roadkils Disk Image [https://www.roadkil.net/program.php?ProgramID=12]

Linux

gunzip -c devbase-image-bytesatwork-bytepanel-emmc-20190729194430.sdimg.gz | dd of=/dev/mmcblk<X> bs=8M conv=fdatasync status=progress

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytepanel/2.7; cd ~/workdir/bytepanel/2.7
$ repo init -u https://github.com/bytesatwork/bsp-platform.git -b warrior
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for bytePANEL:

$ cd ~/workdir/bytepanel/2.7
$ MACHINE=bytepanel DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake devbase-image-bytesatwork

The output is found in:

~/workdir/bytepanel/2.7/build/tmp/deploy/images/bytepanel

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/build/tmp/deploy/images/<machine name>
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

	Image size is too small

If you encounter that your image size is too small to install additional software,
please have a look at the IMAGE_ROOTFS_SIZE variable under
~/workdir/<machine-name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb.
Increase the size if necessary.

Toolchain

Where do you get the toolchain?

	Device

	Yocto Version

	Download

	Checksum (SHA256)

	bytePANEL

	Yocto 2.7

	poky-bytesatwork-glibc-x86_64-devbase-image-bytesatwork-armv7at2hf-neon-bytepanel-toolchain-2.7.3.sh [https://download.bytesatwork.io/transfer/bytesatwork/poky-bytesatwork-glibc-x86_64-devbase-image-bytesatwork-armv7at2hf-neon-bytepanel-toolchain-2.7.3.sh]

	b25e4a3f764eaf583ad0e6a3e0edcac9a1a9314ab6d1f4aad290c415afdbe0e7

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is
a self-extracting shell script.

Hint

If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is executable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important

	The following tools need to be installed on your development system:
	
	xz (Debian package: xz-utils)

	python (any version)

	gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/3.0.2/environment-setup-armv7at2hf-neon-poky-linux-gnueabi

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -march=armv7-a -mthumb -mfpu=neon -mfloat-abi=hard --sysroot=/opt/poky-bytesatwork/3.0.2/sysroots/armv7at2hf-neon-poky-linux-gnueabi

Cross-compile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

How to bring your binary to the target?

	Connect the embedded device’s ethernet to your LAN

	Determine the embedded target IP address by ip addr show

[image: ../../_images/ip_addr_show_28.png]

	Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/tmp

[image: ../../_images/scp2.png]

	Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

	Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytepanel/2.7
$ repo init -u https://github.com/bytesatwork/bsp-platform.git -b warrior
$ repo sync

If those commands are completed successfully, the following command
will set up a Yocto Project environment for bytePANEL:

$ cd ~/workdir/bytepanel/2.7
$ MACHINE=bytepanel DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake devbase-image-bytesatwork -c populate_sdk

The toolchain is located under:

~/workdir/bytepanel/2.7/build/tmp/deploy/sdk

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add additional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software components, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit: https://www.yoctoproject.org/docs/2.7.4/overview-manual/overview-manual.html#cross-development-toolchain-generation

Kernel

Download the Linux Kernel

	Device

	Branch

	git URL

	bytePANEL

	baw-ti-linux-4.19.y

	https://github.com/bytesatwork/ti-linux-kernel.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the
provided toolchain from Where do you get the toolchain? or any compatible toolchain (e.g.
from your distribution)

Important

	The following tools need to be installed on your development system:
	
	git

	make

	bc

Note

The following instructions assume, you installed the provided toolchain
for the respective target.

Important

	The following tools need to be installed on your development system:
	
	u-boot-tools

	Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

	Source toolchain

source /opt/poky-bytesatwork/3.0.2/environment-setup-armv7at2hf-neon-poky-linux-gnueabi

	Create defconfig

make bytepanel_defconfig

	Build Linux kernel

make LOADADDR=0x80008000 -j `nproc` uImage bytepanel.dtb

	Install kernel and device tree

To use the newly created kernel and device tree, the necessary
files need to be installed on the target. This can be done either via
Ethernet (e.g. scp) or by copying the files to the SD card.

Note

For scp installation: Don’t forget to mount /boot on the target.

	File

	Target path

	Target partition

	arch/arm/boot/uImage

	/boot/uImage

	/dev/mmcblk0p1

	arch/arm/boot/dts/bytepanel.dtb

	/boot/devtree.dtb

	/dev/mmcblk0p1

[image: ../../_images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg]

 Hardware Development

Hardware Development

We provide the development for a wide range of embedded systems, from small-scale embedded components to sophisticated embedded systems with increased security requirements. Our engineers are certified hardware experts and provide long experience in business.

byteENGINE AM335x

	General Information: The byteENGINE AM335x is a high performance
industrial oriented computing module. It allows a short
time-to-market, while reducing development costs and substantial
design risks. The system on module (SOM) uses the Texas Instruments
AM335x industrial applications processor family. The AM335x features
a PowerVRTM SGX Graphics Accelerator Subsystem for 3D graphics
acceleration. The Programmable Real-Time Unit and Industrial
Communication Subsystem (PRU-ICSS) allows independent operation from
the ARM processor. PRU-ICSS enables real-time protocols such as
EtherCAT, PROFINET, EtherNet/IP, PROFIBUS, Ethernet Powerlink and
Sercos.

The byteENGINE AM335x is a high performance industrial oriented
computing module. It allows a short time-to-market, while reducing
development costs and substantial design risks.

The system on module (SOM) uses the Texas Instruments AM335x
industrial applications processor family. The AM335x features a
PowerVRTM SGX Graphics Accelerator Subsystem for 3D graphics
acceleration. The Programmable Real-Time Unit and Industrial
Communication Subsystem (PRU-ICSS) allows independent operation from
the ARM processor. PRU-ICSS enables real-time protocols such as
EtherCAT, PROFINET, EtherNet/IP, PROFIBUS, Ethernet Powerlink and
Sercos.

	Datasheet AM335x: https://www.bytesatwork.io/wp-content/uploads/2019/03/Datasheet_byteENGINE_AM335x-12.pdf

	Prepared Pinmux file AM335x: https://download.bytesatwork.io/documentation/byteENGINE/ressources/byteEngineM2-20160922.pinmux

	Detailed pinout AM335x: https://download.bytesatwork.io/documentation/byteENGINE/ressources/PinmuxConfigSummary_byteEngineM2-20160922.xlsx

	Datasheet Connectors Neltron 2001S-100G-270-020: https://download.bytesatwork.io/documentation/byteENGINE/ressources/Neltron_2000P.pdf

	Schematic of the connectors X1 and X2: https://download.bytesatwork.io/documentation/byteENGINE/ressources/m2-connector.pdf

	Texas Instruments Sitara™ AM335x Processors: http://www.ti.com/processors/sitara-arm/am335x-cortex-a8/overview.html

	AM335x Technical Reference Manual: https://www.ti.com/lit/ug/spruh73q/spruh73q.pdf

	TPS65910x Integrated Power-Management Unit: http://www.ti.com/lit/ds/symlink/tps65910.pdf

byteENGINE STM32MP1x

	General Information: The byteENGINE STM32MP1x is a high
performance industrial oriented computing module. It allows you a
short time-to-market, reducing development costs and substantial
design risks.

The system on module (SOM) uses the STM32MP15xxAC devices which
are based on the high-performance dual-core ARM® Cortex®-A7 32-bit
RISC core operating at up to 650 MHz/800 MHz. The STM32MP15xxAC
devices also embed a Cortex®-M4 32-bit RISC core operating at up to
200 MHz frequency. The Cortex®-M4 core features a floating point unit
(FPU) single precision which supports ARM® single-precision
dataprocessing instructions and data types.

Furthermore, the STM32MP15xxAC devices embed a 3D graphic
processing unit (Vivante® - OpenGL® ES 2.0) running at up to 533 MHz,
with performances up to 26 Mtriangle/s, 133 Mpixel/s.

	Factsheet STM32MP1x: https://www.bytesatwork.io/wp-content/uploads/2019/04/Fact-Sheet-byteENGINE_STM32MP1x.pdf

	Datasheet STM32MP1x: https://www.bytesatwork.io/wp-content/uploads/2019/12/Datasheet_byteENGINE_STM32MP1x-6.pdf

	Detailed pinout STM32MP1x: https://download.bytesatwork.io/documentation/byteENGINE/ressources/byteENGINE-M5-pinout.xlsx

	Datasheet Connectors Neltron 2001S-100G-270-020: https://download.bytesatwork.io/documentation/byteENGINE/ressources/Neltron_2000P.pdf

	Schematic of the connectors X1 and X2: https://download.bytesatwork.io/documentation/byteENGINE/ressources/m5-connector-pinout.pdf

	STMicroelectronics STM32MP1: https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-series.html

	STPMIC1 power management IC: https://www.st.com/en/power-management/stpmic1.html

	Datasheet STM32MP157C: https://www.st.com/resource/en/datasheet/stm32mp157c.pdf

	STM32CubeMX Software Download: https://www.st.com/en/development-tools/stm32cubemx.html

	STM32MP1x prepared CubeMX Project: https://download.bytesatwork.io/documentation/byteENGINE/ressources/byteENGINE_STM32MP1.ioc

	Prepared project: step model STM32MP1x: https://download.bytesatwork.io/documentation/byteENGINE/ressources/byteengine-m5.step

	Altium Library Neltron 2001S-100G-270-020: https://download.bytesatwork.io/documentation/byteENGINE/ressources/2001s-100G-270-020.zip

	Altium Library byteENGINE STM32MP1x (X1/X2 position mask on layer 21): https://download.bytesatwork.io/documentation/byteENGINE/ressources/Footprint-byteENGINE-M5.zip

 Errata

Errata

Known issues

	byteDEVKIT < V1.2

	STM32MP1 Ethernet

byteDEVKIT < V1.2

STM32MP1 Ethernet

Due to a hardware issue at the ethernet PHY autonegotiation is disabled.

Using the ethernet setting from Device Tree of 1 GbE will not work on ethernet switches < 1 GbE.

As a workaround the ethtool could be used to set the speed manually.

Download it from here [http://packages.bytesatwork.io/yocto/3.1.11/bytedevkit-stm32mp1/cortexa7t2hf-neon-vfpv4/ethtool_5.4-r0_armhf.deb],
copy it to the SD card and install it on the target with:

dpkg -i ethtool_5.4-r0_armhf.deb

Set the desired speed manually:

ethtool -s eth0 speed 100 duplex full
or even
ethtool -s eth0 speed 10 duplex half

[image: _images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg]

 Index

Index

_images/Putty_2.png
[4.336563) Goodix-TS 0-005d: 120 comnunication failure; -6
[5l05011] EXT4-Fs (mcblkops): re-nounted. Opts: (null)
in1T: Entering runlevel: 5
JConfiquring netuork interfaces,.. [5,85274] TI IPG3857 stamac-0:00; attache
o PHY driver [TI IPG3857] (nii_bus:phy_addr=stmnac=0:00, irq=POLL)
[5.573453] dunacd: Haster AT perforns any burst length
[5a77443] stas2-cimac 58002000, ethernet ath0: No Safety Features support fol
i
[5.334760] sta32-dunc 53002000, ethernst sth0: TEEE 1588-2008 Advanced Tines|
]

5,833614] stu32-dunac 58002000, ethernet, eth: registered PTP clock

i

[5900541) TP6: ADIRCONFCNETIEV_U): stho: Link. is ot ready

[5l037268] stw2-cmac 58002000, 5thernet eth0: Lirk is Up - 16bps/Full - Flo|
by control rx/tx

[5.044336] 1Pu6: ADIRCONF(NETIEV_CHANGE): eth0: Link becones ready

Jdone.

Jstarting suslogd/klosd: done

JPoky (footo Project Reference Tistro) 3.0.2 butedevkit /dev/ttusTHO

outedeukit login: root
passuord:
frotbutedeukit: "+
Jrootebutedevkit: s I

_images/Putty_3.png
[4.336563) Goodix-TS 0-005d: 120 comnunication failure; -6
[5l05011] EXT4-Fs (mcblkops): re-nounted. Opts: (null)
in1T: Entering runlevel: 5
JConfiquring netuork interfaces,.. [5,85274] TI IPG3857 stamac-0:00; attache
o PHY driver [TI IPG3857] (nii_bus:phy_addr=stmnac=0:00, irq=POLL)
[5.573453] dunacd: Haster AT perforns any burst length
[5a77443] stas2-cimac 58002000, ethernet ath0: No Safety Features support fol
i
[5.334760] sta32-dunc 53002000, ethernst sth0: TEEE 1588-2008 Advanced Tines|
]

5,833614] stu32-dunac 58002000, ethernet, eth: registered PTP clock

i

[5900541) TP6: ADIRCONFCNETIEV_U): stho: Link. is ot ready

[5l037268] stw2-cmac 58002000, 5thernet eth0: Lirk is Up - 16bps/Full - Flo|
by control rx/tx

[5.044336] 1Pu6: ADIRCONF(NETIEV_CHANGE): eth0: Link becones ready

Jdone.

Jstarting suslogd/klosd: done

JPoky (footo Project Reference Tistro) 3.0.2 butedevkit /dev/ttusTHO

outedeukit login: root
passuord:
frotbutedeukit: "+
Jrootebutedevkit: s I

_images/8104c0d0d822584caadfc9153884a7f541ccd17e.jpg
Welcome to the

»byteWIKIl«

_images/Putty_1.png
Category:

Logging

~ Terminal
Keyboard
Bell
Features

~ Window
Appearance
Behaviour
Translation
Selection
Colours
Fonts

~ Connection
Data
Proxy

PUTTY Configuration =S

Basic options for your PUTTY session
|| Specify the destination you want to connect to
Serial line Speed

[devryusso [s200 |

Connection type:
ORaw O Telnet O Rlogin O SSH @ Serial

Load, save or delete a stored session
Saved Sessions

|Default settings

Close window on exi
© Always O Never O Only on clean exit

open cancel

_images/Putty_6.png
[4.236663) Goodix-T5 0-005d; 12 test failed attenpt 2: -6
[4:336504) Goodix-TS 0-005d: 120 communication failure: -6
[5027193] EXTa=Fs (mncblk0pS): re-mounted. Opts: (null)
in1T: Entering runlevel: 5
JConfiquring netuork interfaces,.. [5,861469] TI IPG3857 stamac-0:00; attache
o PHY driver [TI IPG3857] (nii_bus:phy_addr=stmnac=0:00, irq=POLL)
[5.381887] dunacd: Master AT perforns any burst length
[claE5773] sta2-cimac 58002000, ethernet sth0: No Safety Features support fol
i
[5.533308) sta32-dunsc 53002000, ethernst sth0: EEE 1588-2008 Advanced Tines|
Jtanp supported
5,302038] stu32-dunac 58002000, ethernet, eth: registered PTP clock

i

[5303353) [Pu6: ADIRCONF(NETIEV_UP): stho: Link. is ot ready

[5037203] stw2-cmac 58002000, cthernet eth0: Lirk is Up - 16bps/Full - Flo|
by control rx/tx

[5.044282] 1PuB: ADIRCONF(NETIEV_CHANGE): eth0: Lirk becones ready

Jdone.

Jstarting suslogd/klosd: done

JPoky (footo Project Reference Tistro) 3.0.2 butedevkit /dev/ttusTHO

outedeukit login: root
passuord:
Jroot@butedevkit: s I

_images/af0dd0ad047d723c82474c868122c38e65f8107e.jpg
bytesatwork"

_images/Putty_4.png
Category:

Logging

~ Terminal
Keyboard
Bell
Features

~ Window
Appearance
Behaviour
Translation
Selection
Colours
Fonts

~ Connection
Data
Proxy

PUTTY Configuration =S

Basic options for your PUTTY session
|| Specify the destination you want to connect to
Serial line Speed

[comr [s200 |

Connection type:
ORaw O Telnet O Rlogin O SSH @ Serial

Load, save or delete a stored session
Saved Sessions

Default Settings

Close window on exi
© Always O Never O Only on clean exit

open cancel

_images/Putty_5.png
[4.336563) Goodix-TS 0-005d: 120 comnunication failure; -6
[5l05011] EXT4-Fs (mcblkops): re-nounted. Opts: (null)
in1T: Entering runlevel: 5
JConfiquring netuork interfaces,.. [5,85274] TI IPG3857 stamac-0:00; attache
o PHY driver [TI IPG3857] (nii_bus:phy_addr=stmnac=0:00, irq=POLL)
[5.573453] dunacd: Haster AT perforns any burst length
[5a77443] stas2-cimac 58002000, ethernet ath0: No Safety Features support fol
i
[5.334760] sta32-dunc 53002000, ethernst sth0: TEEE 1588-2008 Advanced Tines|
]

5,833614] stu32-dunac 58002000, ethernet, eth: registered PTP clock

i

[5900541) TP6: ADIRCONFCNETIEV_U): stho: Link. is ot ready

[5l037268] stw2-cmac 58002000, 5thernet eth0: Lirk is Up - 16bps/Full - Flo|
by control rx/tx

[5.044336] 1Pu6: ADIRCONF(NETIEV_CHANGE): eth0: Link becones ready

Jdone.

Jstarting suslogd/klosd: done

JPoky (footo Project Reference Tistro) 3.0.2 butedevkit /dev/ttusTHO

outedeukit login: root
passuord:
frotbutedeukit: "+
Jrootebutedevkit: s I

_images/apt-cache_nodejs.png
Jrootibutedeukit: "+
Jrostibutedevkit:"# apt-cache search nodejs

frodejs=src - nodejs version 10,16,3-r0 - Source files
Jrode-red-bcrupt - A berypt library for Nodels.

Jrodejs—dey - rodejs version 10,16,3-r0 - Tevelopnent files
frodejs - nodejs version 10,16, 5-r0

frodejs-doc - nodeys version 10,18,3-r0 - Docunentation iles
Jrodejs-dbg - rodeys version 10,16.3-r0 - Tebugging Files
Jrodejs-npn - rodejs version 10,16.3-r0

Jrodejs-sustentap ~ nodejs version 10,16.3-r0
frootbutedeukit: "

Jroot@bytedevkits s I

_images/apt-get_install_wide.png
Jrootibutedeukit: "+
Jrootbutedevkiti# apt-get install nodejs
JRozding package Lists. .. Tone
Building dependency tree
Rozding state information... Tone
[The follouing additional packages will be installed:
Tibicudatakd LibicuilBnG4 1ibicuchd
rhe following NEU packages will be installed:
Tibicudatabd LibicuilinG4 1ibicuichd nadejs
0 uparaded, 4 neuly installed, 0 to renove and O not uparaded.
Jieed to get 131 HE of archives.,
Jofter this operation, 0B of additional disk space uill be used,
00 uou vant. to cantinue? [V/n] y
JUARNING: The following packages cannot be authenticated
Tibicudataé Libicunchd 1ibicuilinGd nadejs
install these packages uithout verification? [y/h] y
pot: 1. http://packages. butesatuark. io/yosta/3.0. 2/butedevkit /cartexa7t2hf-neon-ufpyd ./ 1ibicudatabd 64,210 [6704 kB]
Got:2 ttp://packages. bytesatuark. io/yosta/3.0. 2/butedeukit /car texa7t 2hf-neon-vFpyd ./ 1ibicuucd 64,270 [524 KB]
Got:3 ttp://packages.butesatuark. io/yocta/3.0, 2/butedevkit /cor texa7t hfneon-ufpud ./ 1ibicullEnsd 64,2-r0 (778 kE]
ot 4 http://packages. bytesatuark. io/yosta/3.0, 2/butedevkit /cor texa7t 2hf-neon-uFpvd ./ nadejs 10.16.3-r0 (3074 KB]
Fotched 13,1 1B in 4s (2901 kE/s)
Jse ecting previously unselected package libicudatadd.
(Reading database ... 2953 files and directories currently installed.)
&0 unpack ,../Libicudata6d_64,2-r0_arahf deb ..
Tibicudatabd (64,2-r0) ...
previously unselected package libicuuced.,
&0 unpack . ./Libicuuchd_64,2-r0_arnhf deb ..
Libicuicsd (64,2-0) ...
previously unselected package libicuiltnéd,
t0 unpack ,./LibicuilBned_64,2-r0_arnhf deb ..
Libicui18nd (64,2-r0) ...
previausly wnselécted package nodejs.
t0 unpack.../nodejs 10,18, 3-r0_arthf .deb ..
nodejs (10,16,3-r0) .,
sotting up Libicudstabd (84.2-70] ...
sotting up Libicuuctd (84,2°70) .0
fsotting up Libicuiifned (84.2-r0] .,
5otting up rodejs (10,16,3-10) ...
rootibytedeukit:™s
Jrootebutedevkit: s I

_images/6d9327d3b5c06744d606e10756f302f12b219a88.jpg

_images/bytes.png
bytesatwork

nav.xhtml

 Table of Contents

 		
 byteWIKI

 		
 About the company

 		
 Our philosophy

 		
 Unboxing byteDEVKIT STM32MP1

 		
 Technical overview byteDEVKIT STM32MP1

 		
 Unboxing Video Tutorial

 		
 First start byteDEVKIT STM32MP1

 		
 Connecting the Hardware and first Booting

 		
 Bring-up byteDEVKIT STM32MP1

 		
 How do I connect to byteDEVKIT using the serial console?

 		
 LINUX

 		
 WINDOWS

 		
 How to install additional software using apt

 		
 Software Development

 		
 byteDEVKIT-am62x (Yocto 4.0)

 		
 Downloads

 		
 Image

 		
 Toolchain

 		
 Kernel

 		
 U-Boot

 		
 byteDEVKIT-imx8mm (Yocto 4.0)

 		
 Downloads

 		
 Image

 		
 Toolchain

 		
 Kernel

 		
 U-Boot

 		
 byteDEVKIT-stm32mp1 (Yocto 4.0)

 		
 Downloads

 		
 Image

 		
 Toolchain

 		
 Kernel

 		
 U-Boot

 		
 Archive

 		
 byteDEVKIT-am335x (Yocto 3.1)

 		
 byteDEVKIT-stm32mp1 (Yocto 3.1)

 		
 byteDEVKIT-stm32mp1 (Yocto 3.2)

 		
 byteDEVKIT (Yocto 3.0)

 		
 bytePANEL (Yocto 3.0)

 		
 byteDEVKIT (Yocto 2.7)

 		
 bytePANEL (Yocto 2.7)

 		
 Hardware Development

 		
 byteENGINE AM335x

 		
 byteENGINE STM32MP1x

 		
 Errata

 		
 byteDEVKIT < V1.2

 		
 STM32MP1 Ethernet

_images/unboxing_10kl.jpg
bytes: work

_images/unboxing_11kl.jpg
bytes work

_images/ip_addr_show_28.png
Jrootibutedeukit: "+
froatbutedevkit:# ip addr shaw
12" 1oz <LOOPBACK, UPLOUER_UP> ntu B8535 qdise nosueue alen 1000
Tirk/loopback 00:00100:00:00:00 brd 00300:00:00:00:00
inet 127.0.0,1/8 scope hast. lo
valig_1ft Forever preferred_Ift forever
inet6 ::1/128 scope host
valid_1Ft forever preferred_Ift f