
byteWIKI
Release 1.0

Johannes Böhm and others

Apr 11, 2024

ABOUT

1 About the company 3

2 Unboxing byteDEVKIT STM32MP1 5

3 First start byteDEVKIT STM32MP1 9

4 Bring-up byteDEVKIT STM32MP1 13

5 Software Development 21

6 Hardware Development 109

7 Errata 111

i

ii

byteWIKI, Release 1.0

ABOUT 1

byteWIKI, Release 1.0

2 ABOUT

CHAPTER

ONE

ABOUT THE COMPANY

bytes at work is a modern Swiss Technology company specialized in industrial computing. Our focus lies on the
development of hardware and embedded software, as well as customizing Linux systems. The entire development life
cycle takes place in-house with transparent project management and customer involvement. This significantly reduces
both development time and development costs.

We have years of experience in developing coordinated hardware and software solutions – from the prototype to the
final product. We make your system usable end-to-end for your needs.

1.1 Our philosophy

Hardware and software for industrial computers have to fulfill an immense range of demanding challenges. They
are used in completely different areas of industries and they have to be able to adapt unique and specific tasks. Our
employees pay particular attention to each and every customer. That is why our products and services meet and even
exceed our customers expectations.

We from bytes at work are aware that the current persistent industrial development also has its darker side. This is our
motivation to be exemplary in terms of use of resources. No wonder that unconditional reliability, long service life and
low power consumption are main features of all our products.

3

byteWIKI, Release 1.0

4 Chapter 1. About the company

CHAPTER

TWO

UNBOXING BYTEDEVKIT STM32MP1

This guide delivers new users a brief overview of the package content and the functions of our byteDEVKIT
STM32MP1. When unboxing you should find the following components:

• The byteDEVKIT STM32MP1 with a 5-inch touchscreen display

• The SOM STM32MP1x

Note: The SOM STM32MP1x is already connected with the byteDEVKIT STM32MP1.

5

byteWIKI, Release 1.0

• The power supply for the byteDEVKIT STM32MP1

• The USB serial cable for the byteDEVKIT STM32MP1

• micro-SD card with preinstalled Linux

6 Chapter 2. Unboxing byteDEVKIT STM32MP1

byteWIKI, Release 1.0

2.1 Technical overview byteDEVKIT STM32MP1

• The byteDEVKIT STM32MP1 offers the following connectors on the front side:

– USB 2.0

– RJ45 Ethernet 1 Gbit

– USB OTG

– Power connector

• You find the extension on the backside. The byteDEVKIT STM32MP1 offers:

– 40 pin header compatible for the rasperry pi
– 60 pin header with all the needed signals: I2C, SPI, CAN, UART, I2S, LDC, GPIO and PWM

• The micro-SD card slot contains a micro-SD card with preinstalled Linux OS:

Note: The micro-SD card is already slotted to the byteDEVKIT STM32MP1.

2.1. Technical overview byteDEVKIT STM32MP1 7

byteWIKI, Release 1.0

2.2 Unboxing Video Tutorial

8 Chapter 2. Unboxing byteDEVKIT STM32MP1

CHAPTER

THREE

FIRST START BYTEDEVKIT STM32MP1

This guide helps with the first start of the byteDEVKIT STM32MP1:

3.1 Connecting the Hardware and first Booting

• Prepare the USB serial cable for connection

• Locate the black cable of the serial connector.

Caution: Connect the serial cable to the byteDEVKIT STM32MP1 as shown. The black cable must point towards
the USB OTG connector.

• Connect the USB connector with USB port of your computer or laptop.

• Connect the ethernet RJ45 with the byteDEVKIT STM32MP1.

9

byteWIKI, Release 1.0

• Plug in the power socket.

• Connect the power supply cable to the power slot of the byteDEVKIT STM32MP1.

• A green LED on the backside of the byteDEVKIT STM32MP1 indicates the status of the power supply.

Attention: Your byteDEVKIT STM32MP1 is powered up, when the green LED lights up. If the LED doesn´t
light up, check the connection of the power socket.

• The 5-inch touchscreen display shows the bytes at work-logo when booting.

Hint: The booting procedure will take a few seconds.

10 Chapter 3. First start byteDEVKIT STM32MP1

byteWIKI, Release 1.0

• Now you can access the byteDEVKIT STM32MP1 with your laptop.

Hint: For further information refer to: “Bring-up_byteDEVKIT_STM32MP1”.

3.1. Connecting the Hardware and first Booting 11

https://jf-bytewiki.readthedocs.io/en/latest/firststart.html#id1

byteWIKI, Release 1.0

12 Chapter 3. First start byteDEVKIT STM32MP1

CHAPTER

FOUR

BRING-UP BYTEDEVKIT STM32MP1

4.1 How do I connect to byteDEVKIT using the serial console?

• Use the serial port to connect the byteDEVKIT STM32MP1:
– Connect the debug cable with the byteDEVKIT STM32MP1 and your computer/laptop

– Start a serial communication program on your computer/laptop (‹putty›, ‹minicom› or something else)

– Set to 115200, 8N1, no flow control

– login with: user: “root” and password: “rootme”

4.1.1 LINUX

• Start PuTTY

13

byteWIKI, Release 1.0

• Click “Serial”

• Change “Serial line” to “/dev/ttyUSB0”

• Change “Speed” to 115200

• Navigate to “Serial” in the menu “Connection”

Hint: make sure you have Data bits set to 8, Stop bits set to 1, Parity to None, Flow control to None

• Click “Open”

• Power up the byteDEVKIT STM32MP1

14 Chapter 4. Bring-up byteDEVKIT STM32MP1

byteWIKI, Release 1.0

• Once the login prompt appears, login with user “root” and password “rootme”

Note: You are now succesfully connected to the byteDEVKIT STM32MP1

4.1. How do I connect to byteDEVKIT using the serial console? 15

byteWIKI, Release 1.0

4.1.2 WINDOWS

• Connect the USB serial adapter to the computer

• Windows installs the driver automatically (if the windows doesn´t install the driver reconnect the serial adapter
cable)

• Open device manager and navigate to “Ports (COM & LPT)”

• The serial adapter shows up in the device tree: “Prolific USB-to-Serial Comm Port (COM7)”

• “COM7” is your serial port

• Install a serial terminal application, e.g. PuTTY (version 0.59 and newer)
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

• Start PuTTY

• Click “Serial”

• Change “Serial line” to serial port you found in device manager

16 Chapter 4. Bring-up byteDEVKIT STM32MP1

byteWIKI, Release 1.0

• Change “Speed” to 115200

• Navigate to “Serial” in the menu “Connection”

Hint: make sure you have Data bits set to 8, Stop bits set to 1, Parity to None, Flow control to None

• Click “Open”

Power up the byteDEVKIT STM32MP1

Once the login prompt appears, login with user “root” and password “rootme”

4.1. How do I connect to byteDEVKIT using the serial console? 17

byteWIKI, Release 1.0

Note: You are now successfully connected to the byteDEVKIT STM32MP1

4.2 How to install additional software using apt

Hint: Follow the link for additional information about “apt”: https://help.ubuntu.com/community/AptGet/Howto

Note: byteDEVKIT < V1.2: If you are using a LAN switch (hub) with no 1 GbE support see STM32MP1 Ethernet.

1. Connect the embedded device’s ethernet to your LAN

2. Run: apt-get update

3. Run: apt-cache search <software component> to search for available packages e.g.: apt-cache search nodejs

18 Chapter 4. Bring-up byteDEVKIT STM32MP1

https://help.ubuntu.com/community/AptGet/Howto

byteWIKI, Release 1.0

5. Run: apt-get install <software component> to install additional software e.g.: apt-get install nodejs

4.2. How to install additional software using apt 19

byteWIKI, Release 1.0

20 Chapter 4. Bring-up byteDEVKIT STM32MP1

CHAPTER

FIVE

SOFTWARE DEVELOPMENT

The entire development life cycle is done in-house with transparent project management and customer involvement.
We have proven experience in a wide range of industries, including industrial automation and custom solutions for
consumer electronics. This section helps you step by step initiating the software development process.

Current software platforms and images are available directly under this navigation item. Older versions are found in
the Archive.

Hint: bytePANEL has become outdated. Current software platforms will only support byteDEVKIT with am335x or
stm32mp1 modules.

5.1 byteDEVKIT-am62x (Yocto 4.0)

5.1.1 Downloads

SD card image

Download Checksum (SHA256)
bytesatwork-minimal-image-bytedevkit-
am62x.wic.gz

0747dfb463edad01cd3bf7985bed602e717b1dfa2f09258ed6860c37b57c67cb

bytesatwork-minimal-image-bytedevkit-
am62x.wic.bmap

3577b6bc71600903fcba120629a50f5595e25f9ceb63d6301efb3f46d3848115

Hint: Updating from an older image? You can update your older image by using: apt-get update and apt-get
upgrade.

1. check for new version in the table above

2. edit /etc/apt/sources.list and point to the new package feed

3. run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that an
incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

21

https://bytewiki.readthedocs.io/en/latest/archive.html
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-am62x/4.0.9/bytesatwork-minimal-image-bytedevkit-am62x.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-am62x/4.0.9/bytesatwork-minimal-image-bytedevkit-am62x.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-am62x/4.0.9/bytesatwork-minimal-image-bytedevkit-am62x.wic.bmap
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-am62x/4.0.9/bytesatwork-minimal-image-bytedevkit-am62x.wic.bmap

byteWIKI, Release 1.0

Toolchain

Download Checksum (SHA256)
poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-
aarch64-bytedevkit-am62x-toolchain-4.0.9.sh

a5e9e6706cbff94fb3e31b41e948cbe1665cabca457e1bf337c59d45d6616c82

U-Boot

Description Download Checksum (SHA256)
SPL R5F tiboot3.bin 53481b110634d711c43c47db40b2cfbce8b993cc6b63892d204d6563f35ea690
SPL A53 tispl.bin ee581879fba5a58dc872395eda734e5fe4d5bfdc4a4eb48b7e09b21991827908
U-Boot A53 u-boot.img 7c14d88c61772c3bb36d4d1441eee46f3d64f4d5d5abbb1b0ba2a264247a20aa

5.1.2 Image

How do you flash the image?

Attention:
• You need a microSD card with at least 8GB capacity.

• All existing data on the microSD card will be lost.

• Do not format the microSD card before flashing.

Windows

1. Unzip the file bytesatwork-minimal-image-bytedevkit-am62x.wic.gz (e.g. with 7-zip)

2. Write the resulting file to the microSD card with a tool like Roadkils Disk Image

Linux

gunzip -c bytesatwork-minimal-image-bytedevkit-am62x.wic.gz | dd of=/dev/mmcblk<X> bs=8M␣
→˓conv=fsync status=progress

Hint: To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytedevkit-am62x.wic.gz /dev/mmcblk<X>

22 Chapter 5. Software Development

https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-am62x/4.0.9/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-aarch64-bytedevkit-am62x-toolchain-4.0.9.sh
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-am62x/4.0.9/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-aarch64-bytedevkit-am62x-toolchain-4.0.9.sh
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-am62x/4.0.9/tiboot3.bin
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-am62x/4.0.9/tispl.bin
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-am62x/4.0.9/u-boot.img
https://www.roadkil.net/program.php?ProgramID=12

byteWIKI, Release 1.0

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit-am62x/4.0; cd ~/workdir/bytedevkit-am62x/4.0
$ repo init -b kirkstone -u https://github.com/bytesatwork/bsp-platform-ti.git
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT-am62x:

$ cd ~/workdir/bytedevkit-am62x/4.0
$ MACHINE=bytedevkit-am62x DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

The output is found in:

~/workdir/bytedevkit-am62x/4.0/build/tmp/deploy/images/bytedevkit-am62x

Hint: For additional information about yocto images and how to build them, please visit: https://docs.yoctoproject.
org/4.0.9/brief-yoctoprojectqs/index.html#building-your-image.

How to modify the image

The image recipes can be found in ~/workdir/bytedevkit-am62x/4.0/sources/
meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to
bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/bytedevkit-am62x/4.0
$ MACHINE=bytedevkit-am62x DISTRO=poky-bytesatwork EULA=1 . setup-environment␣
→˓build
$ bitbake bytesatwork-minimal-image

5.1. byteDEVKIT-am62x (Yocto 4.0) 23

https://docs.yoctoproject.org/4.0.9/brief-yoctoprojectqs/index.html#building-your-image
https://docs.yoctoproject.org/4.0.9/brief-yoctoprojectqs/index.html#building-your-image

byteWIKI, Release 1.0

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/bytedevkit-am62x/4.0/sources/meta-bytesatwork/recipes-core/
→˓images
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

• Image size is too small
If you encounter that your image size is too small to install additional software, please have a look at the
IMAGE_ROOTFS_SIZE variable under ~/workdir/bytedevkit-am62x/4.0/sources/meta-bytesatwork/
recipes-core/images/bytesatwork-minimal-image.bb. Increase the size if necessary.

5.1.3 Toolchain

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is a self-extracting shell script.

Hint: If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is exe-
cutable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important:
The following tools need to be installed on your development system:

• xz (Debian package: xz-utils)

• python (any version)

• gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/4.0.9/environment-setup-aarch64-poky-linux

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

24 Chapter 5. Software Development

byteWIKI, Release 1.0

aarch64-poky-linux-gcc -fstack-protector-strong -O2 -D_FORTIFY_SOURCE=2 -Wformat -
→˓Wformat-security -Werror=format-security --sysroot=/opt/poky-bytesatwork/4.0.9_
→˓bytedevkit-am62x/sysroots/aarch64-poky-linux

Crosscompile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 64-bit LSB pie executable, ARM aarch64, version 1 (SYSV), dynamically␣
→˓linked, interpreter /lib/ld-linux-aarch64.so.1,␣
→˓BuildID[sha1]=257792938c3ed4fbf6b15d071c60973ab51b2f37, for GNU/Linux 3.14.0, with␣
→˓debug_info, not stripped

How to bring your binary to the target?

1. Connect the embedded device’s ethernet to your LAN

2. Determine the embedded target IP address by ip addr show

3. Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/
tmp

5.1. byteDEVKIT-am62x (Yocto 4.0) 25

byteWIKI, Release 1.0

4. Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

5. Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytedevkit-am62x/4.0
$ repo init -b kirkstone -u https://github.com/bytesatwork/bsp-platform-ti.git
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT-am62x:

$ cd ~/workdir/bytedevkit-am62x/4.0
$ MACHINE=bytedevkit-am62x DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit-am62x/4.0/build/tmp/deploy/sdk

26 Chapter 5. Software Development

byteWIKI, Release 1.0

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add
additional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-
image recipe. It can be found under ~/workdir/bytedevkit-am62x/4.0/sources/meta-bytesatwork/
recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the
recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software com-
ponents, the toolchain needs to be rebuilt by:

$ cd ~/workdir/bytedevkit-am62x/4.0
$ MACHINE=bytedevkit-am62x DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/bytedevkit-am62x/4.0/build/tmp/deploy/sdk

For additional information, please visit: https://docs.yoctoproject.org/4.0.9/overview-manual/concepts.html#
cross-development-toolchain-generation.

5.1.4 Kernel

Download the Linux Kernel

Device Branch git URL
bytedevkit-am62x baw-ti-linux-6.1.y https://github.com/bytesatwork/ti-linux-kernel

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the provided toolchain from Toolchain or any compatible
toolchain (e.g. from your distribution)

Important:
The following tools need to be installed on your development system:

• git

• make

• bc

Note: The following instructions assume, you installed the provided toolchain for the respective target.

5.1. byteDEVKIT-am62x (Yocto 4.0) 27

https://docs.yoctoproject.org/4.0.9/overview-manual/concepts.html#cross-development-toolchain-generation
https://docs.yoctoproject.org/4.0.9/overview-manual/concepts.html#cross-development-toolchain-generation
https://github.com/bytesatwork/ti-linux-kernel

byteWIKI, Release 1.0

Important:
The following tools need to be installed on your development system:

• OpenSSL headers (Debian package: libssl-dev)

• depmod (Debian package: kmod)

1. Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

2. Source toolchain

source /opt/poky-bytesatwork/4.0.9/environment-setup-aarch64-poky-linux

3. Create defconfig

make bytedevkit_am62x_defconfig

4. Build Linux kernel

make -j `nproc` Image dtbs modules

5. Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary files need to be installed on the target.
This can be done either via Ethernet (e.g. scp) or by copying the files to the SD card.

Note: For scp installation: Don’t forget to mount /boot on the target.

File Target path Target parti-
tion

arch/arm64/boot/Image /boot/Image /dev/
mmcblk1p2

arch/arm64/boot/dts/ti/
k3-am625-bytedevkit.dtb

/boot/
k3-am62x-bytedevkit.dtb

/dev/
mmcblk1p2

Note:
After installing a new kernel, it often fails to load modules, as the _signature_ of the kernel changed
and it fails to find its corresponding modules folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

Otherwise, please follow the instructions to copy the kernel modules

6. Install kernel modules

To copy all available modules to the target, it’s best to deploy them locally first and then copy all modules to the
target.

28 Chapter 5. Software Development

byteWIKI, Release 1.0

mkdir /tmp/bytedevkit-am62x
make INSTALL_MOD_PATH=/tmp/bytedevkit-am62x modules_install

Now you can copy the content of the folder /tmp/bytedevkit-am62x into the target’s root folder (/)
which is partition /dev/mmcblk1p2.

5.1.5 U-Boot

Download U-Boot Source Code

Device Branch git URL
bytedevkit-am62x baw-ti-u-boot-2023.04 https://github.com/bytesatwork/u-boot-ti

Build U-Boot

1. Install and get Dependencies

• Cross toolchain

• TI-linux-firmware

• TF-A

• OP-TEE

Hint: Probably some tools are missing on your host:

• A list can be found here https://docs.u-boot.org/en/latest/build/gcc.html#building-with-gcc

• A non-exhaustive list of (additional) necessary tools

sudo apt install bison flex swig libssl-dev python3-setuptools \
python-dev python3-dev python3-yaml python3-jsonschema

2. Build TF-A

TI TF-A build instructions

3. Build OP-TEE

TI OP-TEE build instructions

4. Build u-boot

You should have downloaded TI-linux-firmware and built TF-A, OP-TEE OS already.

TI u-boot build instructions

5.1. byteDEVKIT-am62x (Yocto 4.0) 29

https://github.com/bytesatwork/u-boot-ti
https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/linux/Overview/GCC_ToolChain.html#location-in-sdk
https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/devices/AM62X/linux/Release_Specific_Release_Notes.html#ti-linux-firmware
https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/devices/AM62X/linux/Release_Specific_Release_Notes.html#tf-a
https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/devices/AM62X/linux/Release_Specific_Release_Notes.html#op-tee
https://docs.u-boot.org/en/latest/build/gcc.html#building-with-gcc
https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/linux/Foundational_Components_ATF.html#arm-trusted-firmware-a
https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/linux/Foundational_Components_OPTEE.html#op-tee
https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/linux/Foundational_Components/U-Boot/UG-General-Info.html#build-u-boot

byteWIKI, Release 1.0

Important: Use am62x_bytedevkit_r5_defconfig and am62x_bytedevkit_a53_defconfig instead of
the TI defconfigs.

Note: Clean command: make ARCH=arm CROSS_COMPILE=aarch64-linux-gnu- O=<your_dir>
distclean

Install SPL and U-Boot

SD Card

To use the newly created U-Boot, the necessary files need to be installed on the SD card. This can be done
either on the host or on the target.

File Target partition Target partition
label

File sys-
tem

tiboot3.bin tispl.bin
u-boot.img

/dev/mmcblk1p1 (or /
dev/sdX)

boot FAT32

You need to copy the files to the boot partition. The example assumes that the boot partition is mounted
on /media/${USER}/boot:

cp tiboot3.bin tispl.bin u-boot.img /media/${USER}/boot/

The next time the target is reset, it will start with the new U-Boot.

Hint: Copy the related files to SD card, see end of section TI u-boot build instructions

eMMC via SD Card

1. Copy the tiboot3.bin, tispl.bin and u-boot.img to the SD Card rootfs partition.

2. Program the tiboot3.bin, tispl.bin and u-boot.img from the SD card to the eMMC.

In the u-boot shell run update_emmc

Or manually by following commands

mmc dev 0 1
load mmc 1:2 ${loadaddr} tiboot3.bin
mmc write ${loadaddr} 0x0 0x400
load mmc 1:2 ${loadaddr} tispl.bin
mmc write ${loadaddr} 0x400 0xC00
load mmc 1:2 ${loadaddr} u-boot.img
mmc write ${loadaddr} 0x1000 0x1000
mmc dev 0 0

30 Chapter 5. Software Development

https://software-dl.ti.com/processor-sdk-linux/esd/AM62X/09_01_00_08/exports/docs/linux/Foundational_Components/U-Boot/UG-General-Info.html#build-u-boot

byteWIKI, Release 1.0

Note: The bootloader needs to be stored in the boot0 hardware partition of the eMMC. The layout of
boot0 is defined so that it fits within 4 MiB, defined in blocks of 512 Bytes:

File start end size
tiboot3.bin 0x0000 0x0400 0x0400 512 KiB
tispl.bin 0x0400 0x1000 0x0C00 1536 KiB
u-boot.img 0x1000 0x2000 0x1000 2048 KiB

5.2 byteDEVKIT-imx8mm (Yocto 4.0)

5.2.1 Downloads

SD card image

Download Checksum (SHA256)
bytesatwork-minimal-image-bytedevkit-
imx8mm.wic.gz

99ce54bf379fc97c11157bc48fa0a4fb91ac5f1776968e3bfe2a45471b878427

bytesatwork-minimal-image-bytedevkit-
imx8mm.wic.bmap

c94c9177bf80a56fb493acd79df8d677cc7b11d70ea6b7b97256647c161872b4

Hint: Updating from an older image? You can update your older image by using: apt-get update and apt-get
upgrade.

1. check for new version in the table above

2. edit /etc/apt/sources.list and point to the new package feed

3. run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that an
incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

5.2. byteDEVKIT-imx8mm (Yocto 4.0) 31

https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-imx8mm/4.0.9/bytesatwork-minimal-image-bytedevkit-imx8mm.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-imx8mm/4.0.9/bytesatwork-minimal-image-bytedevkit-imx8mm.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-imx8mm/4.0.9/bytesatwork-minimal-image-bytedevkit-imx8mm.wic.bmap
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-imx8mm/4.0.9/bytesatwork-minimal-image-bytedevkit-imx8mm.wic.bmap

byteWIKI, Release 1.0

Toolchain

Download Checksum (SHA256)
poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-
cortexa53-crypto-bytedevkit-imx8mm-toolchain-4.0.9.sh

b558c84d3030628daa4d227ba122a3a4f5deccf476d291bd3584222b38c8427f

U-Boot

Description Download Checksum (SHA256)
U-Boot (SD-
card)

imx-boot-bytedevkit-imx8mm-
sd.bin-flash_evk

ee2bddafa023d6c84b59474cd783b46fa3bfac7301ba8765d37486dd833b3d0a

5.2.2 Image

How do you flash the image?

Attention:
• You need a microSD card with at least 8GB capacity.

• All existing data on the microSD card will be lost.

• Do not format the microSD card before flashing.

Windows

1. Unzip the file bytesatwork-minimal-image-bytedevkit-imx8mm.wic.gz (e.g. with 7-zip)

2. Write the resulting file to the microSD card with a tool like Roadkils Disk Image

Linux

gunzip -c bytesatwork-minimal-image-bytedevkit-imx8mm.wic.gz | dd of=/dev/mmcblk<X>␣
→˓bs=8M conv=fsync status=progress

Hint: To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytedevkit-imx8mm.wic.gz /dev/mmcblk<X>

32 Chapter 5. Software Development

https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-imx8mm/4.0.9/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa53-crypto-bytedevkit-imx8mm-toolchain-4.0.9.sh
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-imx8mm/4.0.9/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa53-crypto-bytedevkit-imx8mm-toolchain-4.0.9.sh
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-imx8mm/4.0.9/imx-boot-bytedevkit-imx8mm-sd.bin-flash_evk
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-imx8mm/4.0.9/imx-boot-bytedevkit-imx8mm-sd.bin-flash_evk
https://www.roadkil.net/program.php?ProgramID=12

byteWIKI, Release 1.0

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit-imx8mm/4.0; cd ~/workdir/bytedevkit-imx8mm/4.0
$ repo init -b kirkstone -u https://github.com/bytesatwork/bsp-platform-nxp.git
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT-imx8mm:

$ cd ~/workdir/bytedevkit-imx8mm/4.0
$ MACHINE=bytedevkit-imx8mm DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

The output is found in:

~/workdir/bytedevkit-imx8mm/4.0/build/tmp/deploy/images/bytedevkit-imx8mm

Hint: For additional information about yocto images and how to build them, please visit: https://docs.yoctoproject.
org/4.0.9/brief-yoctoprojectqs/index.html#building-your-image.

How to modify the image

The image recipes can be found in ~/workdir/bytedevkit-imx8mm/4.0/sources/
meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to
bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/bytedevkit-imx8mm/4.0
$ MACHINE=bytedevkit-imx8mm DISTRO=poky-bytesatwork EULA=1 . setup-environment␣
→˓build
$ bitbake bytesatwork-minimal-image

5.2. byteDEVKIT-imx8mm (Yocto 4.0) 33

https://docs.yoctoproject.org/4.0.9/brief-yoctoprojectqs/index.html#building-your-image
https://docs.yoctoproject.org/4.0.9/brief-yoctoprojectqs/index.html#building-your-image

byteWIKI, Release 1.0

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/bytedevkit-imx8mm/4.0/sources/meta-bytesatwork/recipes-core/
→˓images
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

• Image size is too small
If you encounter that your image size is too small to install additional software, please have
a look at the IMAGE_ROOTFS_SIZE variable under ~/workdir/bytedevkit-imx8mm/4.0/sources/
meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb. Increase the size if nec-
essary.

5.2.3 Toolchain

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is a self-extracting shell script.

Hint: If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is exe-
cutable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important:
The following tools need to be installed on your development system:

• xz (Debian package: xz-utils)

• python (any version)

• gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/4.0.9/environment-setup-cortexa53-crypto-poky-linux

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

34 Chapter 5. Software Development

byteWIKI, Release 1.0

aarch64-poky-linux-gcc -mcpu=cortex-a53 -march=armv8-a+crc+crypto -fstack-protector-
→˓strong -O2 -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-security --
→˓sysroot=/opt/poky-bytesatwork/4.0.9_bytedevkit-imx8mm/sysroots/cortexa53-crypto-poky-
→˓linux

Crosscompile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 64-bit LSB pie executable, ARM aarch64, version 1 (SYSV), dynamically␣
→˓linked, interpreter /lib/ld-linux-aarch64.so.1,␣
→˓BuildID[sha1]=c4a368203085c7897b632728f24bfa60eec34771, for GNU/Linux 3.14.0, with␣
→˓debug_info, not stripped

How to bring your binary to the target?

1. Connect the embedded device’s ethernet to your LAN

2. Determine the embedded target IP address by ip addr show

3. Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/
tmp

5.2. byteDEVKIT-imx8mm (Yocto 4.0) 35

byteWIKI, Release 1.0

4. Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

5. Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytedevkit-imx8mm/4.0
$ repo init -b kirkstone -u https://github.com/bytesatwork/bsp-platform-nxp.git
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT-imx8mm:

$ cd ~/workdir/bytedevkit-imx8mm/4.0
$ MACHINE=bytedevkit-imx8mm DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit-imx8mm/4.0/build/tmp/deploy/sdk

36 Chapter 5. Software Development

byteWIKI, Release 1.0

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add
additional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-
image recipe. It can be found under ~/workdir/bytedevkit-imx8mm/4.0/sources/meta-bytesatwork/
recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the
recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software com-
ponents, the toolchain needs to be rebuilt by:

$ cd ~/workdir/bytedevkit-imx8mm/4.0
$ MACHINE=bytedevkit-imx8mm DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/bytedevkit-imx8mm/4.0/build/tmp/deploy/sdk

For additional information, please visit: https://docs.yoctoproject.org/4.0.9/overview-manual/concepts.html#
cross-development-toolchain-generation.

5.2.4 Kernel

Download the Linux Kernel

Device Branch git URL
bytedevkit-imx8mm baw-lf-5.15.y https://github.com/bytesatwork/linux-imx.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the provided toolchain from Toolchain or any compatible
toolchain (e.g. from your distribution)

Important:
The following tools need to be installed on your development system:

• git

• make

• bc

Note: The following instructions assume, you installed the provided toolchain for the respective target.

5.2. byteDEVKIT-imx8mm (Yocto 4.0) 37

https://docs.yoctoproject.org/4.0.9/overview-manual/concepts.html#cross-development-toolchain-generation
https://docs.yoctoproject.org/4.0.9/overview-manual/concepts.html#cross-development-toolchain-generation
https://github.com/bytesatwork/linux-imx.git

byteWIKI, Release 1.0

Important:
The following tools need to be installed on your development system:

• OpenSSL headers (Debian package: libssl-dev)

• depmod (Debian package: kmod)

1. Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

2. Source toolchain

source /opt/poky-bytesatwork/4.0.9/environment-setup-cortexa53-crypto-poky-linux

3. Create defconfig

make bytedevkit_imx8mm_defconfig

4. Build Linux kernel

make -j `nproc` Image dtbs modules

5. Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary files need to be installed on the target.
This can be done either via Ethernet (e.g. scp) or by copying the files to the SD card.

Note: For scp installation: Don’t forget to mount /boot on the target.

File Target path Target parti-
tion

arch/arm64/boot/Image /boot/Image /dev/
mmcblk1p1

arch/arm64/boot/dts/freescale/
imx8mm-bytedevkit.dtb

/boot/
imx8mm-bytedevkit.dtb

/dev/
mmcblk1p1

Note:
After installing a new kernel, it often fails to load modules, as the _signature_ of the kernel changed
and it fails to find its corresponding modules folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

Otherwise, please follow the instructions to copy the kernel modules

6. Install kernel modules

To copy all available modules to the target, it’s best to deploy them locally first and then copy all modules to the
target.

38 Chapter 5. Software Development

byteWIKI, Release 1.0

mkdir /tmp/bytedevkit-imx8mm
make INSTALL_MOD_PATH=/tmp/bytedevkit-imx8mm modules_install

Now you can copy the content of the folder /tmp/bytedevkit-imx8mm into the target’s root folder (/)
which is partition /dev/mmcblk1p1.

5.2.5 U-Boot

Additional information can be found under https://www.nxp.com/docs/en/user-guide/IMX_LINUX_
USERS_GUIDE.pdf and https://docs.u-boot.org/en/latest/board/nxp/index.html.

Note: On i.MX 8M Mini, SPL and U-Boot are combined in a container file called flash.bin (Yocto:
imx-boot-bytedevkit-imx8mm-sd.bin-flash_evk).

Download U-Boot Source Code

Device Branch git URL
bytedevkit-
imx8mm

baw-
imx_v2020.04_5.4.24_2.1.0

https://github.com/bytesatwork/
u-boot-imx

Build U-Boot

To compile U-Boot, an ARM toolchain is necessary. You can use the provided toolchain from Toolchain or any com-
patible toolchain (e.g. from your distribution)

Important: A list of needed host tools can be found here https://docs.u-boot.org/en/latest/build/gcc.
html#building-with-gcc, e.g.

sudo apt install bc bison build-essential coccinelle \
device-tree-compiler dfu-util efitools flex gdisk graphviz imagemagick \
liblz4-tool libgnutls28-dev libguestfs-tools libncurses-dev \
libpython3-dev libsdl2-dev libssl-dev lz4 lzma lzma-alone openssl \
pkg-config python3 python3-asteval python3-coverage python3-filelock \
python3-pkg-resources python3-pycryptodome python3-pyelftools \
python3-pytest python3-pytest-xdist python3-sphinxcontrib.apidoc \
python3-sphinx-rtd-theme python3-subunit python3-testtools \
python3-virtualenv swig uuid-dev

fspi_packer.sh additionally needs the package xxd to be installed on your host:

sudo apt install xxd

5.2. byteDEVKIT-imx8mm (Yocto 4.0) 39

https://www.nxp.com/docs/en/user-guide/IMX_LINUX_USERS_GUIDE.pdf
https://www.nxp.com/docs/en/user-guide/IMX_LINUX_USERS_GUIDE.pdf
https://docs.u-boot.org/en/latest/board/nxp/index.html
https://github.com/bytesatwork/u-boot-imx
https://github.com/bytesatwork/u-boot-imx
https://docs.u-boot.org/en/latest/build/gcc.html#building-with-gcc
https://docs.u-boot.org/en/latest/build/gcc.html#building-with-gcc

byteWIKI, Release 1.0

Note: The following instructions assume, you installed the provided toolchain for the respective target.

1. Download ARM-Trusted-Firmware sources

Device Branch git URL
bytedevkit-imx8mm imx_5.4.24_2.1.0 https://github.com/nxp-imx/imx-atf

2. Build ARM-Trusted-Firmware

cd imx-atf
export CROSS_COMPILE=/opt/poky-bytesatwork/4.0.9/sysroots/x86_64-pokysdk-linux/usr/
→˓bin/aarch64-poky-linux/aarch64-poky-linux-
make PLAT=imx8mm bl31
cd ..

3. Download IMX Firmware

wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.15.bin
chmod +x firmware-imx-8.15.bin
./firmware-imx-8.15.bin

4. Download U-Boot sources

Download the appropriate U-Boot from Download U-Boot Source Code.

5. Source toolchain

source /opt/poky-bytesatwork/4.0.9/environment-setup-cortexa53-crypto-poky-linux

6. Copy necessary files into U-Boot folder

cp -pv ./firmware-imx-8.15/firmware/ddr/synopsys/lpddr4_pmu_train_* ./u-boot-imx/
cp -pv ./imx-atf/build/imx8mm/release/bl31.bin ./u-boot-imx/

7. Build flash.bin

• SD Card

cd u-boot-imx
make distclean
make bytedevkit_defconfig
export ATF_LOAD_ADDR=0x920000
make -j `nproc`
make -j `nproc` flash.bin
cd ..

• SPI

Building for SPI requires IMX mkimage tool

git clone -b lf-5.15.5_1.0.0 https://github.com/nxp-imx/imx-mkimage.git

40 Chapter 5. Software Development

https://github.com/nxp-imx/imx-atf

byteWIKI, Release 1.0

cd u-boot-imx
make distclean
make bytedevkit_fspi_defconfig
export ATF_LOAD_ADDR=0x920000
make -j `nproc`
make -j `nproc` flash.bin
../imx-mkimage/scripts/fspi_packer.sh ../imx-mkimage/scripts/fspi_header␣
→˓0
cd ..

Important: The build command will overwrite the generated flash.bin, so you can not build a binary for the
SD Card and the SPI at the same time.

Install SPL and U-Boot

To use the newly created U-Boot, the necessary file needs to be installed on the SD card. This can be done
either on the host or on the target.

File Target partition Off-
set

flash.bin
Yocto: imx-boot-bytedevkit-imx8mm-sd.
bin-flash_evk

/dev/mmcblk1 (or /dev/
sdX)

33
KiB

You need to write the files to the respective “raw” partition, either on the host system or the target system:

dd if=./u-boot-imx/flash.bin of=/dev/mmcblk1 bs=1K seek=33

The next time the target is reset, it will start with the new U-Boot.

Note: Flash to SPI

1. Copy flash.bin to first SD card partition (root partition)

2. You need to boot into u-boot.

3. In the u-boot shell: run update-spi

4. Or do it manually by

sf probe; sf erase 0 0x200000; load mmc 1:1 ${loadaddr} flash.bin; sf␣
→˓write $loadaddr 0 $filesize

5.2. byteDEVKIT-imx8mm (Yocto 4.0) 41

byteWIKI, Release 1.0

5.3 byteDEVKIT-stm32mp1 (Yocto 4.0)

5.3.1 Downloads

SD card image

Download Checksum (SHA256)
bytesatwork-minimal-image-bytedevkit-
stm32mp1.wic.gz

72e629a3361f2f5529e6124a30ecf7637d0dc0e3045b310d7af8ddbcf3f7ca2b

bytesatwork-minimal-image-bytedevkit-
stm32mp1.wic.bmap

9548f8d625f40a8e43009da3635cee5223235e4839043e28bb38c6873abc7747

Hint: Updating from an older image? You can update your older image by using: apt-get update and apt-get
upgrade.

1. check for new version in the table above

2. edit /etc/apt/sources.list and point to the new package feed

3. run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that an
incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

Toolchain

Download Checksum (SHA256)
poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-
cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-toolchain-4.0.9.sh

847997ab62d47598aa743b6192b36ba6425feef3e9d77961384d44be3aa00052

U-Boot

Note: The images come with a preinstalled U-Boot that supports 512 MB of RAM. If you have a module with 1 GB
of RAM, you will have to Install SPL and U-Boot to unlock the full 1 GB of RAM.

Description Download Checksum (SHA256)
MLO (512
MB)

u-boot-spl.stm32-stm32mp157c-
bytedevkit-v1-3-basic

0556b53f8f9ecff54af89f7fa1f32aec97549aef1a54a1723d3561677804317b

U-Boot (512
MB)

u-boot-stm32mp157c-bytedevkit-v1-3-
basic.img

24fbb4bf87bc4a459d7dd9aeb5c906bceb47a3df8a9954e0f3e860e0a085abd6

MLO (1 GB) u-boot-spl.stm32-stm32mp157c-
bytedevkit-v1-3-1g_ram

1cc7589cd4f39a6782d0276c890521c53a4ef6099fde35c4edbad5370f090d2e

U-Boot (1
GB)

u-boot-stm32mp157c-bytedevkit-v1-3-
1g_ram.img

aebe97b9be2c0862d4a9c9b156278325d70fe33fded7eb0b4bd51377835a3b64

42 Chapter 5. Software Development

https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.bmap
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.bmap
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-toolchain-4.0.9.sh
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-toolchain-4.0.9.sh
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/u-boot-spl.stm32-stm32mp157c-bytedevkit-v1-3-basic
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/u-boot-spl.stm32-stm32mp157c-bytedevkit-v1-3-basic
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/u-boot-stm32mp157c-bytedevkit-v1-3-basic.img
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/u-boot-stm32mp157c-bytedevkit-v1-3-basic.img
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/u-boot-spl.stm32-stm32mp157c-bytedevkit-v1-3-1g_ram
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/u-boot-spl.stm32-stm32mp157c-bytedevkit-v1-3-1g_ram
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/u-boot-stm32mp157c-bytedevkit-v1-3-1g_ram.img
https://download.bytesatwork.io/transfer/bytesatwork/bytedevkit-stm32mp1/4.0.9/u-boot-stm32mp157c-bytedevkit-v1-3-1g_ram.img

byteWIKI, Release 1.0

5.3.2 Image

How do you flash the image?

Attention:
• You need a microSD card with at least 8GB capacity.

• All existing data on the microSD card will be lost.

• Do not format the microSD card before flashing.

Windows

1. Unzip the file bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz (e.g. with 7-zip)

2. Write the resulting file to the microSD card with a tool like Roadkils Disk Image

Linux

gunzip -c bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz | dd of=/dev/mmcblk<X>␣
→˓bs=8M conv=fsync status=progress

Hint: To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz /dev/mmcblk<X>

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit-stm32mp1/4.0; cd ~/workdir/bytedevkit-stm32mp1/4.0
$ repo init -b kirkstone -u https://github.com/bytesatwork/bsp-platform-st.git
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT-stm32mp1:

$ cd ~/workdir/bytedevkit-stm32mp1/4.0
$ MACHINE=bytedevkit-stm32mp1 DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

The output is found in:

~/workdir/bytedevkit-stm32mp1/4.0/build/tmp/deploy/images/bytedevkit-stm32mp1

5.3. byteDEVKIT-stm32mp1 (Yocto 4.0) 43

https://www.roadkil.net/program.php?ProgramID=12

byteWIKI, Release 1.0

Hint: For additional information about yocto images and how to build them, please visit: https://docs.yoctoproject.
org/4.0.9/brief-yoctoprojectqs/index.html#building-your-image.

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to
bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment␣
→˓build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/recipes-
→˓core/images
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

• Image size is too small
If you encounter that your image size is too small to install additional software, please have a look
at the IMAGE_ROOTFS_SIZE variable under ~/workdir/<machine-name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb. Increase the size if nec-
essary.

5.3.3 Toolchain

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is a self-extracting shell script.

Hint: If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is exe-
cutable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

44 Chapter 5. Software Development

https://docs.yoctoproject.org/4.0.9/brief-yoctoprojectqs/index.html#building-your-image
https://docs.yoctoproject.org/4.0.9/brief-yoctoprojectqs/index.html#building-your-image

byteWIKI, Release 1.0

Important:
The following tools need to be installed on your development system:

• xz (Debian package: xz-utils)

• python (any version)

• gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/4.0.9/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-
→˓gnueabi

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -mthumb -mfpu=neon-vfpv4 -mfloat-abi=hard -mcpu=cortex-a7 -
→˓fstack-protector-strong -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-
→˓security --sysroot=/opt/poky-bytesatwork/4.0.9/sysroots/cortexa7t2hf-neon-vfpv4-poky-
→˓linux-gnueabi

Crosscompile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

How to bring your binary to the target?

1. Connect the embedded device’s ethernet to your LAN

2. Determine the embedded target IP address by ip addr show

5.3. byteDEVKIT-stm32mp1 (Yocto 4.0) 45

byteWIKI, Release 1.0

3. Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/
tmp

4. Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

5. Run your binary on the target: /<path>/<binary name>

46 Chapter 5. Software Development

byteWIKI, Release 1.0

How do you build a toolchain?

$ cd ~/workdir/bytedevkit-stm32mp1/4.0
$ repo init -b kirkstone -u https://github.com/bytesatwork/bsp-platform-st.git
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT-stm32mp1:

$ cd ~/workdir/bytedevkit-stm32mp1/4.0
$ MACHINE=bytedevkit-stm32mp1 DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit-stm32mp1/4.0/build/tmp/deploy/sdk

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add addi-
tional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image
recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/
recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the
recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software com-
ponents, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit: https://docs.yoctoproject.org/4.0.9/overview-manual/concepts.html#
cross-development-toolchain-generation.

5.3. byteDEVKIT-stm32mp1 (Yocto 4.0) 47

https://docs.yoctoproject.org/4.0.9/overview-manual/concepts.html#cross-development-toolchain-generation
https://docs.yoctoproject.org/4.0.9/overview-manual/concepts.html#cross-development-toolchain-generation

byteWIKI, Release 1.0

5.3.4 Kernel

Download the Linux Kernel

Device Branch git URL
bytedevkit-stm32mp1 baw-v5.10-stm32mp-r2 https://github.com/bytesatwork/linux-stm32mp.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the provided toolchain from Toolchain or any compatible
toolchain (e.g. from your distribution)

Important:
The following tools need to be installed on your development system:

• git

• make

• bc

Note: The following instructions assume, you installed the provided toolchain for the respective target.

Important:
The following tools need to be installed on your development system:

• OpenSSL headers (Debian package: libssl-dev)

• depmod (Debian package: kmod)

1. Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

2. Source toolchain

source /opt/poky-bytesatwork/4.0.9/environment-setup-cortexa7t2hf-neon-vfpv4-poky-
→˓linux-gnueabi

3. Create defconfig

make multi_v7_defconfig
scripts/kconfig/merge_config.sh -m -r .config arch/arm/configs/fragment-*
make olddefconfig

4. Build Linux kernel

48 Chapter 5. Software Development

https://github.com/bytesatwork/linux-stm32mp.git

byteWIKI, Release 1.0

make LOADADDR=0xC2000040 -j `nproc` uImage stm32mp157c-bytedevkit-v1-3.dtb modules

5. Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary files need to be installed on the target.
This can be done either via Ethernet (e.g. scp) or by copying the files to the SD card.

Note: For scp installation: Don’t forget to mount /boot on the target.

File Target path Target parti-
tion

arch/arm/boot/uImage /boot/uImage /dev/
mmcblk0p4

arch/arm/boot/dts/
stm32mp157c-bytedevkit-v1-3.dtb

/boot/
stm32mp157c-bytedevkit-v1-3.
dtb

/dev/
mmcblk0p4

Note:
After installing a new kernel, it often fails to load modules, as the _signature_ of the kernel changed
and it fails to find its corresponding modules folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

Otherwise, please follow the instructions to copy the kernel modules

Hint: If you have a byteDEVKIT V1.1, replace v1-3 with v1-1 in the file names above.

6. Install kernel modules

To copy all available modules to the target, it’s best to deploy them locally first and then copy all modules to the
target.

mkdir /tmp/bytedevkit-stm32mp1
make INSTALL_MOD_PATH=/tmp/bytedevkit-stm32mp1 modules_install

Now you can copy the content of the folder /tmp/bytedevkit-stm32mp1 into the target’s root folder (/)
which is partition /dev/mmcblk0p5.

5.3. byteDEVKIT-stm32mp1 (Yocto 4.0) 49

byteWIKI, Release 1.0

5.3.5 U-Boot

Download U-Boot Source Code

Device Branch git URL
bytedevkit-
stm32mp1

baw-v2020.01-stm32mp-
r1

https://github.com/bytesatwork/
u-boot-stm32mp

Build U-Boot

To compile U-Boot, an ARM toolchain is necessary. You can use the provided toolchain from Toolchain or any com-
patible toolchain (e.g. from your distribution)

Important:
The following tools need to be installed on your development system:

• git

• make

• bc

Note: The following instructions assume, you installed the provided toolchain for the respective target.

1. Download U-Boot sources

Download the appropriate U-Boot from Download U-Boot Source Code.

2. Source toolchain

source /opt/poky-bytesatwork/4.0.9/environment-setup-cortexa7t2hf-neon-vfpv4-poky-
→˓linux-gnueabi

3. Create defconfig

make stm32mp157_bytedevkit_defconfig

Note: For the 1 GB RAM variant, use make stm32mp157_bytedevkit_1g_defconfig instead.

4. Build U-Boot and SPL

make -j `nproc`

50 Chapter 5. Software Development

https://github.com/bytesatwork/u-boot-stm32mp
https://github.com/bytesatwork/u-boot-stm32mp

byteWIKI, Release 1.0

Install SPL and U-Boot

To use the newly created U-Boot, the necessary files need to be installed on the SD card. This can be done
either on the host or on the target.

File Target partition
u-boot-spl.stm32 /dev/mmcblk0p1
u-boot-spl.stm32 /dev/mmcblk0p2
u-boot.img /dev/mmcblk0p3

You need to write the files to the respective “raw” partition, either on the host system or the target system:

dd if=u-boot-spl.stm32 of=/dev/mmcblk0p1
dd if=u-boot-spl.stm32 of=/dev/mmcblk0p2
dd if=u-boot.img of=/dev/mmcblk0p3

The next time the target is reset, it will start with the new U-Boot.

5.4 Archive

Here you’ll find informations on older images and platforms.

Note: Information in this section is EOL and not supported anymore.

5.4.1 byteDEVKIT-am335x (Yocto 3.1)

Image

Where do you get the SD card image?

Device Yocto
Version

Download Checksum (SHA256)

bytedevkit-
am335x

Yocto
3.1.3

bytesatwork-minimal-image-
bytedevkit-am335x.wic.gz (wic.bmap)

d1429b5f68808450538d6354d7f40898828c73ef1079092d23663925dce79766

Hint: Updating from an older image? You can update your older image by using: apt-get update and apt-get
upgrade.

1. check for new version in the table above

2. edit /etc/apt/sources.list and point to the new package feed

5.4. Archive 51

https://download.bytesatwork.io/transfer/bytesatwork/m2/3.1.3/bytesatwork-minimal-image-bytedevkit-am335x.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/m2/3.1.3/bytesatwork-minimal-image-bytedevkit-am335x.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/m2/3.1.3/bytesatwork-minimal-image-bytedevkit-am335x.wic.bmap

byteWIKI, Release 1.0

3. run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that an
incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

How do you flash the image?

Attention:
• You need a microSD card with at least 8GB capacity.

• All existing data on the microSD card will be lost.

• Do not format the microSD card before flashing.

Windows

1. Unzip the file bytesatwork-minimal-image-bytedevkit-am335x.wic.gz (e.g. with 7-zip)

2. Write the resulting file to the microSD card with a tool like Roadkils Disk Image

Linux

gunzip -c bytesatwork-minimal-image-bytedevkit-am335x.wic.gz | dd of=/dev/mmcblk<X>␣
→˓bs=8M conv=fdatasync status=progress

Hint: To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytedevkit-am335x.wic.gz /dev/mmcblk<X>

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit-am335x/3.1; cd ~/workdir/bytedevkit-am335x/3.1
$ repo init -u https://github.com/bytesatwork/bsp-platform-ti.git -b dunfell
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT-am335x:

$ cd ~/workdir/bytedevkit-am335x/3.1
$ MACHINE=bytedevkit-am335x DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

52 Chapter 5. Software Development

https://www.roadkil.net/program.php?ProgramID=12

byteWIKI, Release 1.0

The output is found in:

~/workdir/bytedevkit-am335x/3.1/build/tmp/deploy/images/bytedevkit-am335x

Hint: For additional information about yocto images and how to build them, please visit: https://www.yoctoproject.
org/docs/3.1/mega-manual/mega-manual.html#brief-building-your-image

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to
bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment␣
→˓build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/build/tmp/deploy/images/<machine␣
→˓name>
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

• Image size is too small
If you encounter that your image size is too small to install additional software, please have a look
at the IMAGE_ROOTFS_SIZE variable under ~/workdir/<machine-name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb. Increase the size if nec-
essary.

5.4. Archive 53

https://www.yoctoproject.org/docs/3.1/mega-manual/mega-manual.html#brief-building-your-image
https://www.yoctoproject.org/docs/3.1/mega-manual/mega-manual.html#brief-building-your-image

byteWIKI, Release 1.0

Toolchain

Where do you get the toolchain?

Device Yocto
Ver-
sion

Download Checksum (SHA256)

bytedevkit-
am335x

Yocto
3.1.3

poky-bytesatwork-glibc-x86_64-bytesatwork-
minimal-image-armv7at2hf-neon-bytedevkit-am335x-
toolchain-3.1.3.sh

8f36974f1635022a1744f0dfde9c3810fcd1a44422afdad0d3884b79a07aecf3

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is a self-extracting shell script.

Hint: If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is exe-
cutable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important:
The following tools need to be installed on your development system:

• xz (Debian package: xz-utils)

• python (any version)

• gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/3.1.3/environment-setup-armv7at2hf-neon-poky-linux-gnueabi

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -march=armv7-a -mthumb -mfpu=neon -mfloat-abi=hard -fstack-
→˓protector-strong -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-
→˓security --sysroot=/opt/poky-bytesatwork/3.1.3/sysroots/armv7at2hf-neon-poky-linux-
→˓gnueabi

Crosscompile the source code, e.g. by:

54 Chapter 5. Software Development

https://download.bytesatwork.io/transfer/bytesatwork/m2/3.1.3/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-armv7at2hf-neon-bytedevkit-am335x-toolchain-3.1.3.sh
https://download.bytesatwork.io/transfer/bytesatwork/m2/3.1.3/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-armv7at2hf-neon-bytedevkit-am335x-toolchain-3.1.3.sh
https://download.bytesatwork.io/transfer/bytesatwork/m2/3.1.3/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-armv7at2hf-neon-bytedevkit-am335x-toolchain-3.1.3.sh

byteWIKI, Release 1.0

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

How to bring your binary to the target?

1. Connect the embedded device’s ethernet to your LAN

2. Determine the embedded target IP address by ip addr show

3. Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/
tmp

5.4. Archive 55

byteWIKI, Release 1.0

4. Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

5. Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytedevkit-am335x/3.1
$ repo init -u https://github.com/bytesatwork/bsp-platform-ti.git -b dunfell
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT-am335x:

$ cd ~/workdir/bytedevkit-am335x/3.1
$ MACHINE=bytedevkit-am335x DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit-am335x/3.1/build/tmp/deploy/sdk

56 Chapter 5. Software Development

byteWIKI, Release 1.0

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add addi-
tional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image
recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/
recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the
recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software com-
ponents, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit: https://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.
html#cross-development-toolchain-generation

Kernel

Download the Linux Kernel

Device Branch git URL
bytedevkit-am335x baw-ti-linux-5.4.y https://github.com/bytesatwork/ti-linux-kernel

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the provided toolchain from Where do you get the
toolchain? or any compatible toolchain (e.g. from your distribution)

Important:
The following tools need to be installed on your development system:

• git

• make

• bc

Note: The following instructions assume, you installed the provided toolchain for the respective target.

5.4. Archive 57

https://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#cross-development-toolchain-generation
https://www.yoctoproject.org/docs/3.1/overview-manual/overview-manual.html#cross-development-toolchain-generation
https://github.com/bytesatwork/ti-linux-kernel

byteWIKI, Release 1.0

Important:
The following tools need to be installed on your development system:

• OpenSSL headers (Debian package: libssl-dev)

• depmod (Debian package: kmod)

• mkimage (Debian package: u-boot-tools)

1. Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

2. Source toolchain

source /opt/poky-bytesatwork/3.1.3/environment-setup-armv7at2hf-neon-poky-linux-
→˓gnueabi

3. Create defconfig

make multi_v7_defconfig

4. Build Linux kernel

make LOADADDR=0x80008000 -j `nproc` uImage am335x-bytedevkit.dtb modules

5. Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary files need to be installed on the target.
This can be done either via Ethernet (e.g. scp) or by copying the files to the SD card.

Note: For scp installation: Don’t forget to mount /boot on the target.

File Target path Target partition
arch/arm/boot/uImage /boot/uImage /dev/

mmcblk0p4
arch/arm/boot/dts/am335x-bytedevkit.
dtb

/boot/am335x-bytedevkit.
dtb

/dev/
mmcblk0p4

Note:
After installing a new kernel, it often fails to load modules, as the _signature_ of the kernel changed
and it fails to find its corresponding modules folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

Otherwise, please follow the instructions to copy the kernel modules

6. Install kernel modules

To copy all available modules to the target, it’s best to deploy them locally first and then copy all modules to the
target.

58 Chapter 5. Software Development

byteWIKI, Release 1.0

mkdir /tmp/bytedevkit-am335x
make INSTALL_MOD_PATH=/tmp/bytedevkit-am335x modules_install

Now you can copy the content of the folder /tmp/bytedevkit-am335x into the target’s root folder (/)
which is partition /dev/mmcblk0p5.

5.4.2 byteDEVKIT-stm32mp1 (Yocto 3.1)

Downloads

SD card image

Download Checksum (SHA256)
bytesatwork-minimal-image-bytedevkit-
stm32mp1.wic.gz (wic.bmap)

6fa368ff5df6967480f3704c1a9e987f284fa0f8b78ec679c57be9f74e4520f7

Hint: Updating from an older image? You can update your older image by using: apt-get update and apt-get
upgrade.

1. check for new version in the table above

2. edit /etc/apt/sources.list and point to the new package feed

3. run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that an
incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

Toolchain

Download Checksum (SHA256)
poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-
cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-toolchain-3.1.11.sh

41e304ec75a26d3bcac7d1f9f2cb72fc07e6002d97f7de45f65ef36baf71f450

5.4. Archive 59

https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.bmap
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-toolchain-3.1.11.sh
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-toolchain-3.1.11.sh

byteWIKI, Release 1.0

U-Boot

Note: The images come with a preinstalled U-Boot that supports 512 MB of RAM. If you have a module with 1 GB
of RAM, you will have to Install SPL and U-Boot to unlock the full 1 GB of RAM.

Description Download Checksum (SHA256)
MLO (512
MB)

u-boot-spl.stm32-stm32mp157c-
bytedevkit-basic

ffc3c38e453f7b8760b4edfabd0e6aa0c55fb3e386d8a5a80b90e3a12d0e900d

U-Boot (512
MB)

u-boot-stm32mp157c-bytedevkit-
basic.img

c0fe5de015ceefa8b3e9a761007523b33fb0e0dddda9ee39d7c3d55382a13ccb

MLO (1 GB) u-boot-spl.stm32-stm32mp157c-
bytedevkit-1g_ram

99b88a246879e704f92a4f934a9641db8cf64262033e81dbc69b73b6bdba1d20

U-Boot (1
GB)

u-boot-stm32mp157c-bytedevkit-
1g_ram.img

8fa044532a61bfe82621bafad4b640710cb5406bc280f43e026a4709d269cb45

Image

How do you flash the image?

Attention:
• You need a microSD card with at least 8GB capacity.

• All existing data on the microSD card will be lost.

• Do not format the microSD card before flashing.

Windows

1. Unzip the file bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz (e.g. with 7-zip)

2. Write the resulting file to the microSD card with a tool like Roadkils Disk Image

Linux

gunzip -c bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz | dd of=/dev/mmcblk<X>␣
→˓bs=8M conv=fdatasync status=progress

Hint: To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz /dev/mmcblk<X>

60 Chapter 5. Software Development

https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/u-boot-spl.stm32-stm32mp157c-bytedevkit-basic
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/u-boot-spl.stm32-stm32mp157c-bytedevkit-basic
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/u-boot-stm32mp157c-bytedevkit-basic.img
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/u-boot-stm32mp157c-bytedevkit-basic.img
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/u-boot-spl.stm32-stm32mp157c-bytedevkit-1g_ram
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/u-boot-spl.stm32-stm32mp157c-bytedevkit-1g_ram
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/u-boot-stm32mp157c-bytedevkit-1g_ram.img
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.1.11/u-boot-stm32mp157c-bytedevkit-1g_ram.img
https://www.roadkil.net/program.php?ProgramID=12

byteWIKI, Release 1.0

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit-stm32mp1/3.1; cd ~/workdir/bytedevkit-stm32mp1/3.1
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b dunfell
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT-stm32mp1:

$ cd ~/workdir/bytedevkit-stm32mp1/3.1
$ MACHINE=bytedevkit-stm32mp1 DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

The output is found in:

~/workdir/bytedevkit-stm32mp1/3.1/build/tmp/deploy/images/bytedevkit-stm32mp1

Hint: For additional information about yocto images and how to build them, please visit: https://docs.yoctoproject.
org/3.1.11/brief-yoctoprojectqs/brief-yoctoprojectqs.html#building-your-image.

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to
bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment␣
→˓build
$ bitbake bytesatwork-minimal-image

5.4. Archive 61

https://docs.yoctoproject.org/3.1.11/brief-yoctoprojectqs/brief-yoctoprojectqs.html#building-your-image
https://docs.yoctoproject.org/3.1.11/brief-yoctoprojectqs/brief-yoctoprojectqs.html#building-your-image

byteWIKI, Release 1.0

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/build/tmp/deploy/images/<machine␣
→˓name>
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

• Image size is too small
If you encounter that your image size is too small to install additional software, please have a look
at the IMAGE_ROOTFS_SIZE variable under ~/workdir/<machine-name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb. Increase the size if nec-
essary.

Toolchain

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is a self-extracting shell script.

Hint: If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is exe-
cutable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important:
The following tools need to be installed on your development system:

• xz (Debian package: xz-utils)

• python (any version)

• gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/3.1.11/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-
→˓gnueabi

Check if Cross-compiler is available in environment:

62 Chapter 5. Software Development

byteWIKI, Release 1.0

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -mthumb -mfpu=neon-vfpv4 -mfloat-abi=hard -mcpu=cortex-a7 -
→˓fstack-protector-strong -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-
→˓security --sysroot=/opt/poky-bytesatwork/3.1.11/sysroots/cortexa7t2hf-neon-vfpv4-poky-
→˓linux-gnueabi

Crosscompile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

How to bring your binary to the target?

1. Connect the embedded device’s ethernet to your LAN

2. Determine the embedded target IP address by ip addr show

3. Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/
tmp

5.4. Archive 63

byteWIKI, Release 1.0

4. Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

5. Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytedevkit-stm32mp1/3.1
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b dunfell
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT-stm32mp1:

$ cd ~/workdir/bytedevkit-stm32mp1/3.1
$ MACHINE=bytedevkit-stm32mp1 DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit-stm32mp1/3.1/build/tmp/deploy/sdk

64 Chapter 5. Software Development

byteWIKI, Release 1.0

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add addi-
tional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image
recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/
recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the
recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software com-
ponents, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit: https://docs.yoctoproject.org/3.1.11/overview-manual/
overview-manual-concepts.html#cross-development-toolchain-generation.

Kernel

Download the Linux Kernel

Device Branch git URL
bytedevkit-stm32mp1 baw-v5.10-stm32mp-r1 https://github.com/bytesatwork/linux-stm32mp.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the provided toolchain from Toolchain or any compatible
toolchain (e.g. from your distribution)

Important:
The following tools need to be installed on your development system:

• git

• make

• bc

Note: The following instructions assume, you installed the provided toolchain for the respective target.

5.4. Archive 65

https://docs.yoctoproject.org/3.1.11/overview-manual/overview-manual-concepts.html#cross-development-toolchain-generation
https://docs.yoctoproject.org/3.1.11/overview-manual/overview-manual-concepts.html#cross-development-toolchain-generation
https://github.com/bytesatwork/linux-stm32mp.git

byteWIKI, Release 1.0

Important:
The following tools need to be installed on your development system:

• OpenSSL headers (Debian package: libssl-dev)

• depmod (Debian package: kmod)

1. Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

2. Source toolchain

source /opt/poky-bytesatwork/3.1.11/environment-setup-cortexa7t2hf-neon-vfpv4-poky-
→˓linux-gnueabi

3. Create defconfig

make multi_v7_defconfig
scripts/kconfig/merge_config.sh -m -r .config arch/arm/configs/fragment-*
make olddefconfig

4. Build Linux kernel

make LOADADDR=0xC2000040 -j `nproc` uImage stm32mp157c-bytedevkit.dtb modules

5. Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary files need to be installed on the target.
This can be done either via Ethernet (e.g. scp) or by copying the files to the SD card.

Note: For scp installation: Don’t forget to mount /boot on the target.

File Target path Target parti-
tion

arch/arm/boot/uImage /boot/uImage /dev/
mmcblk0p4

arch/arm/boot/dts/
stm32mp157c-bytedevkit.dtb

/boot/
stm32mp157c-bytedevkit.dtb

/dev/
mmcblk0p4

Note:
After installing a new kernel, it often fails to load modules, as the _signature_ of the kernel changed
and it fails to find its corresponding modules folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

Otherwise, please follow the instructions to copy the kernel modules

6. Install kernel modules

66 Chapter 5. Software Development

byteWIKI, Release 1.0

To copy all available modules to the target, it’s best to deploy them locally first and then copy all modules to the
target.

mkdir /tmp/bytedevkit-stm32mp1
make INSTALL_MOD_PATH=/tmp/bytedevkit-stm32mp1 modules_install

Now you can copy the content of the folder /tmp/bytedevkit-stm32mp1 into the target’s root folder (/)
which is partition /dev/mmcblk0p5.

U-Boot

Download U-Boot

Device Branch git URL
bytedevkit-
stm32mp1

baw-v2020.01-stm32mp-
r1

https://github.com/bytesatwork/
u-boot-stm32mp

Build U-Boot

To compile U-Boot, an ARM toolchain is necessary. You can use the provided toolchain from Toolchain or any com-
patible toolchain (e.g. from your distribution)

Important:
The following tools need to be installed on your development system:

• git

• make

• bc

Note: The following instructions assume, you installed the provided toolchain for the respective target.

1. Download U-Boot sources

Download the appropriate U-Boot from Download U-Boot.

2. Source toolchain

source /opt/poky-bytesatwork/3.1.11/environment-setup-cortexa7t2hf-neon-vfpv4-poky-
→˓linux-gnueabi

3. Create defconfig

5.4. Archive 67

https://github.com/bytesatwork/u-boot-stm32mp
https://github.com/bytesatwork/u-boot-stm32mp

byteWIKI, Release 1.0

make stm32mp157_bytedevkit_defconfig

Note: For the 1 GB RAM variant, use make stm32mp157_bytedevkit_1g_defconfig instead.

4. Build U-Boot and SPL

make -j `nproc`

Install SPL and U-Boot

To use the newly created U-Boot, the necessary files need to be installed on the SD card. This can be done
either on the host or on the target.

File Target partition
u-boot-spl.stm32 /dev/mmcblk0p1
u-boot-spl.stm32 /dev/mmcblk0p2
u-boot.img /dev/mmcblk0p3

You need to write the to the respective “raw” partition, either on the host system or the target system:

dd if=u-boot-spl.stm32 of=/dev/mmcblk0p1
dd if=u-boot-spl.stm32 of=/dev/mmcblk0p2
dd if=u-boot.img of=/dev/mmcblk0p3

The next time the target is reset, it will start with the new U-Boot.

5.4.3 byteDEVKIT-stm32mp1 (Yocto 3.2)

Image

Where do you get the SD card image?

Device Yocto
Version

Download Checksum (SHA256)

bytedevkit-
stm32mp1

Yocto
3.2.2

bytesatwork-minimal-image-bytedevkit-
stm32mp1.wic.gz (wic.bmap)

efc3ed1e56d5c017c7e72549fab30d9909ce24e63c8b0192a8a535af6c5d6a45

Hint: Updating from an older image? You can update your older image by using: apt-get update and apt-get
upgrade.

1. check for new version in the table above

68 Chapter 5. Software Development

https://download.bytesatwork.io/transfer/bytesatwork/m5/3.2.2/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.2.2/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.2.2/bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.bmap

byteWIKI, Release 1.0

2. edit /etc/apt/sources.list and point to the new package feed

3. run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that an
incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

How do you flash the image?

Attention:
• You need a microSD card with at least 8GB capacity.

• All existing data on the microSD card will be lost.

• Do not format the microSD card before flashing.

Windows

1. Unzip the file bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz (e.g. with 7-zip)

2. Write the resulting file to the microSD card with a tool like Roadkils Disk Image

Linux

gunzip -c bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz | dd of=/dev/mmcblk<X>␣
→˓bs=8M conv=fdatasync status=progress

Hint: To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytedevkit-stm32mp1.wic.gz /dev/mmcblk<X>

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit-stm32mp1/3.2; cd ~/workdir/bytedevkit-stm32mp1/3.2
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b gatesgarth
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT-stm32mp1:

$ cd ~/workdir/bytedevkit-stm32mp1/3.2
$ MACHINE=bytedevkit-stm32mp1 DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

5.4. Archive 69

https://www.roadkil.net/program.php?ProgramID=12

byteWIKI, Release 1.0

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

The output is found in:

~/workdir/bytedevkit-stm32mp1/3.2/build/tmp/deploy/images/bytedevkit-stm32mp1

Hint: For additional information about yocto images and how to build them, please visit: https://docs.yoctoproject.
org/3.2.2/singleindex.html#building-your-image

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to
bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment␣
→˓build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/build/tmp/deploy/images/<machine␣
→˓name>
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

• Image size is too small
If you encounter that your image size is too small to install additional software, please have a look
at the IMAGE_ROOTFS_SIZE variable under ~/workdir/<machine-name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb. Increase the size if nec-
essary.

70 Chapter 5. Software Development

https://docs.yoctoproject.org/3.2.2/singleindex.html#building-your-image
https://docs.yoctoproject.org/3.2.2/singleindex.html#building-your-image

byteWIKI, Release 1.0

Toolchain

Where do you get the toolchain?

Device Yocto
Ver-
sion

Download Checksum (SHA256)

bytedevkit-
stm32mp1

Yocto
3.2.2

poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-
image-cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-
toolchain-3.2.2.sh

8f8fc481de6d891392a3b3e5edbfcee58788a47366f4581929623126df510e3f

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is a self-extracting shell script.

Hint: If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is exe-
cutable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important:
The following tools need to be installed on your development system:

• xz (Debian package: xz-utils)

• python (any version)

• gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/3.2.2/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-
→˓gnueabi

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -mthumb -mfpu=neon-vfpv4 -mfloat-abi=hard -mcpu=cortex-a7 -
→˓fstack-protector-strong -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-
→˓security --sysroot=/opt/poky-bytesatwork/3.2.2/sysroots/cortexa7t2hf-neon-vfpv4-poky-
→˓linux-gnueabi

5.4. Archive 71

https://download.bytesatwork.io/transfer/bytesatwork/m5/3.2.2/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-toolchain-3.2.2.sh
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.2.2/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-toolchain-3.2.2.sh
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.2.2/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-stm32mp1-toolchain-3.2.2.sh

byteWIKI, Release 1.0

Crosscompile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

How to bring your binary to the target?

1. Connect the embedded device’s ethernet to your LAN

2. Determine the embedded target IP address by ip addr show

3. Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/
tmp

72 Chapter 5. Software Development

byteWIKI, Release 1.0

4. Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

5. Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytedevkit-stm32mp1/3.2
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b gatesgarth
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT-stm32mp1:

$ cd ~/workdir/bytedevkit-stm32mp1/3.2
$ MACHINE=bytedevkit-stm32mp1 DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit-stm32mp1/3.2/build/tmp/deploy/sdk

5.4. Archive 73

byteWIKI, Release 1.0

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add addi-
tional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image
recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/
recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the
recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software com-
ponents, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit: https://docs.yoctoproject.org/3.2.2/overview-manual/
overview-manual-concepts.html#cross-development-toolchain-generation

Kernel

Download the Linux Kernel

Device Branch git URL
bytedevkit-stm32mp1 baw-v5.4-stm32mp-r2 https://github.com/bytesatwork/linux-stm32mp.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the provided toolchain from Where do you get the
toolchain? or any compatible toolchain (e.g. from your distribution)

Important:
The following tools need to be installed on your development system:

• git

• make

• bc

Note: The following instructions assume, you installed the provided toolchain for the respective target.

74 Chapter 5. Software Development

https://docs.yoctoproject.org/3.2.2/overview-manual/overview-manual-concepts.html#cross-development-toolchain-generation
https://docs.yoctoproject.org/3.2.2/overview-manual/overview-manual-concepts.html#cross-development-toolchain-generation
https://github.com/bytesatwork/linux-stm32mp.git

byteWIKI, Release 1.0

Important:
The following tools need to be installed on your development system:

• OpenSSL headers (Debian package: libssl-dev)

• depmod (Debian package: kmod)

1. Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

2. Source toolchain

source /opt/poky-bytesatwork/3.2.2/environment-setup-cortexa7t2hf-neon-vfpv4-poky-
→˓linux-gnueabi

3. Create defconfig

make multi_v7_defconfig
scripts/kconfig/merge_config.sh -m -r .config arch/arm/configs/fragment-*
make olddefconfig

4. Build Linux kernel

make LOADADDR=0xC2000040 -j `nproc` uImage stm32mp157c-bytedevkit.dtb modules

5. Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary files need to be installed on the target.
This can be done either via Ethernet (e.g. scp) or by copying the files to the SD card.

Note: For scp installation: Don’t forget to mount /boot on the target.

File Target path Target parti-
tion

arch/arm/boot/uImage /boot/uImage /dev/
mmcblk0p4

arch/arm/boot/dts/
stm32mp157c-bytedevkit.dtb

/boot/
stm32mp157c-bytedevkit.dtb

/dev/
mmcblk0p4

Note:
After installing a new kernel, it often fails to load modules, as the _signature_ of the kernel changed
and it fails to find its corresponding modules folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

Otherwise, please follow the instructions to copy the kernel modules

6. Install kernel modules

5.4. Archive 75

byteWIKI, Release 1.0

To copy all available modules to the target, it’s best to deploy them locally first and then copy all modules to the
target.

mkdir /tmp/bytedevkit-stm32mp1
make INSTALL_MOD_PATH=/tmp/bytedevkit-stm32mp1 modules_install

Now you can copy the content of the folder /tmp/bytedevkit-stm32mp1 into the target’s root folder (/)
which is partition /dev/mmcblk0p5.

U-Boot

Download U-Boot

Device Branch git URL
bytedevkit-
stm32mp1

baw-v2020.01-stm32mp-
r2

https://github.com/bytesatwork/
u-boot-stm32mp

Build U-Boot

To compile U-Boot, an ARM toolchain is necessary. You can use the provided toolchain from Where do you get the
toolchain? or any compatible toolchain (e.g. from your distribution)

Important:
The following tools need to be installed on your development system:

• git

• make

• bc

Note: The following instructions assume, you installed the provided toolchain for the respective target.

1. Download U-Boot sources

Download the appropriate U-Boot from Download U-Boot.

2. Source toolchain

source /opt/poky-bytesatwork/3.2.2/environment-setup-cortexa7t2hf-neon-vfpv4-poky-
→˓linux-gnueabi

3. Create defconfig

76 Chapter 5. Software Development

https://github.com/bytesatwork/u-boot-stm32mp
https://github.com/bytesatwork/u-boot-stm32mp

byteWIKI, Release 1.0

make stm32mp157_bytedevkit_defconfig

Note: For the 1 GB RAM variant, use make stm32mp157_bytedevkit_1g_defconfig instead.

4. Build U-Boot and SPL

make -j `nproc`

5. Install SPL and U-Boot

To use the newly created U-Boot, the necessary files need to be installed on the SD card. This can be done either
on the host or on the target.

File Target partition
u-boot-spl.stm32 /dev/mmcblk0p1
u-boot-spl.stm32 /dev/mmcblk0p2
u-boot.img /dev/mmcblk0p3

You need to write the to the respective “raw” partition, either on the host system or the target system:

dd if=u-boot-spl.stm32 of=/dev/mmcblk0p1
dd if=u-boot-spl.stm32 of=/dev/mmcblk0p2
dd if=u-boot.img of=/dev/mmcblk0p3

The next time the target is reset, it will start with the new U-Boot.

5.4.4 byteDEVKIT (Yocto 3.0)

Image

Where do you get the SD card image?

Device Yocto
Version

Download Checksum (SHA256)

byteDE-
VKIT

Yocto
3.0.3

bytesatwork-minimal-image-
bytedevkit.wic.gz (wic.bmap)

1c1d442ef80de24f3bb02704880cf8c2124c88008aefca0264bf5850bdf7b54b

Hint: Updating from an older image? You can update your older image by using: apt-get update and apt-get
upgrade.

1. check for new version in the table above

2. edit /etc/apt/sources.list and point to the new package feed

5.4. Archive 77

https://download.bytesatwork.io/transfer/bytesatwork/m5/3.0.3/bytesatwork-minimal-image-bytedevkit.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.0.3/bytesatwork-minimal-image-bytedevkit.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.0.3/bytesatwork-minimal-image-bytedevkit.wic.bmap

byteWIKI, Release 1.0

3. run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that an
incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

How do you flash the image?

Attention:
• You need a microSD card with at least 8GB capacity.

• All existing data on the microSD card will be lost.

• Do not format the microSD card before flashing.

Windows

1. Unzip the file bytesatwork-minimal-image-bytedevkit.wic.gz (e.g. with 7-zip)

2. Write the resulting file to the microSD card with a tool like Roadkils Disk Image

Linux

gunzip -c bytesatwork-minimal-image-bytedevkit.wic.gz | dd of=/dev/mmcblk<X> bs=8M␣
→˓conv=fdatasync status=progress

Hint: To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytedevkit.wic.gz /dev/mmcblk<X>

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit/3.0; cd ~/workdir/bytedevkit/3.0
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b zeus
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT:

$ cd ~/workdir/bytedevkit/3.0
$ MACHINE=bytedevkit DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

78 Chapter 5. Software Development

https://www.roadkil.net/program.php?ProgramID=12

byteWIKI, Release 1.0

The output is found in:

~/workdir/bytedevkit/3.0/build/tmp/deploy/images/bytedevkit

Hint: For additional information about yocto images and how to build them, please visit: https://www.yoctoproject.
org/docs/3.0/mega-manual/mega-manual.html#brief-building-your-image

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to
bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment␣
→˓build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/build/tmp/deploy/images/<machine␣
→˓name>
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

• Image size is too small
If you encounter that your image size is too small to install additional software, please have a look
at the IMAGE_ROOTFS_SIZE variable under ~/workdir/<machine-name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb. Increase the size if nec-
essary.

5.4. Archive 79

https://www.yoctoproject.org/docs/3.0/mega-manual/mega-manual.html#brief-building-your-image
https://www.yoctoproject.org/docs/3.0/mega-manual/mega-manual.html#brief-building-your-image

byteWIKI, Release 1.0

Toolchain

Where do you get the toolchain?

De-
vice

Yocto
Ver-
sion

Download Checksum (SHA256)

byt-
eDE-
VKIT

Yocto
3.0.3

poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-
image-cortexa7t2hf-neon-vfpv4-bytedevkit-toolchain-
3.0.3.sh

fe182429d8bf6d91ca2a556452894612b273141fd168af5bdf0add9be7c0573c

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is a self-extracting shell script.

Hint: If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is exe-
cutable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important:
The following tools need to be installed on your development system:

• xz (Debian package: xz-utils)

• python (any version)

• gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/3.0.3/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-
→˓gnueabi

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -mthumb -mfpu=neon-vfpv4 -mfloat-abi=hard -mcpu=cortex-a7 -
→˓fstack-protector-strong -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-
→˓security --sysroot=/opt/poky-bytesatwork/3.0.3/sysroots/cortexa7t2hf-neon-vfpv4-poky-
→˓linux-gnueabi

80 Chapter 5. Software Development

https://download.bytesatwork.io/transfer/bytesatwork/m5/3.0.3/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-toolchain-3.0.3.sh
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.0.3/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-toolchain-3.0.3.sh
https://download.bytesatwork.io/transfer/bytesatwork/m5/3.0.3/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-cortexa7t2hf-neon-vfpv4-bytedevkit-toolchain-3.0.3.sh

byteWIKI, Release 1.0

Crosscompile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

How to bring your binary to the target?

1. Connect the embedded device’s ethernet to your LAN

2. Determine the embedded target IP address by ip addr show

3. Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/
tmp

5.4. Archive 81

byteWIKI, Release 1.0

4. Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

5. Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytedevkit/3.0
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b zeus
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT:

$ cd ~/workdir/bytedevkit/3.0
$ MACHINE=bytedevkit DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit/3.0/build/tmp/deploy/sdk

82 Chapter 5. Software Development

byteWIKI, Release 1.0

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add addi-
tional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image
recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/
recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the
recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software com-
ponents, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit: https://www.yoctoproject.org/docs/3.0.3/overview-manual/overview-manual.
html#cross-development-toolchain-generation

Kernel

Download the Linux Kernel

Device Branch git URL
byteDEVKIT baw-v4.19-stm32mp https://github.com/bytesatwork/linux-stm32mp.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the provided toolchain from Where do you get the
toolchain? or any compatible toolchain (e.g. from your distribution)

Important:
The following tools need to be installed on your development system:

• git

• make

• bc

Note: The following instructions assume, you installed the provided toolchain for the respective target.

5.4. Archive 83

https://www.yoctoproject.org/docs/3.0.3/overview-manual/overview-manual.html#cross-development-toolchain-generation
https://www.yoctoproject.org/docs/3.0.3/overview-manual/overview-manual.html#cross-development-toolchain-generation
https://github.com/bytesatwork/linux-stm32mp.git

byteWIKI, Release 1.0

Important:
The following tools need to be installed on your development system:

• OpenSSL headers (Debian package: libssl-dev)

• depmod (Debian package: kmod)

1. Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

2. Source toolchain

source /opt/poky-bytesatwork/3.0.3/environment-setup-cortexa7t2hf-neon-vfpv4-poky-
→˓linux-gnueabi

3. Create defconfig

make multi_v7_defconfig
scripts/kconfig/merge_config.sh -m -r .config arch/arm/configs/fragment-*
make olddefconfig

4. Build Linux kernel

make LOADADDR=0xC2000040 -j `nproc` uImage stm32mp157c-bytedevkit-v1-1.dtb modules

5. Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary files need to be installed on the target.
This can be done either via Ethernet (e.g. scp) or by copying the files to the SD card.

Note: For scp installation: Don’t forget to mount /boot on the target.

File Target path Target parti-
tion

arch/arm/boot/uImage /boot/uImage /dev/
mmcblk0p4

arch/arm/boot/dts/
stm32mp157c-bytedevkit-v1-1.dtb

/boot/
stm32mp157c-bytedevkit.dtb

/dev/
mmcblk0p4

Note:
After installing a new kernel, it often fails to load modules, as the _signature_ of the kernel changed
and it fails to find its corresponding modules folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

Otherwise, please follow the instructions to copy the kernel modules

6. Install kernel modules

84 Chapter 5. Software Development

byteWIKI, Release 1.0

To copy all available modules to the target, it’s best to deploy them locally first and then copy all modules to the
target.

mkdir /tmp/bytedevkit
make INSTALL_MOD_PATH=/tmp/bytedevkit modules_install

Now you can copy the content of the folder /tmp/bytedevkit into the target’s root folder (/) which is
partition /dev/mmcblk0p5.

5.4.5 bytePANEL (Yocto 3.0)

Image

Where do you get the SD card image?

De-
vice

Yocto
Version

Download Checksum (SHA256)

bytePANELYocto 3.0 bytesatwork-minimal-image-bytepanel-
emmc.wic.gz (wic.bmap)

e3e166f28fb815b09c6372bbcae4b4c8fcd00f93e57e96084bdee90c255764d9

Hint: Updating from an older image? You can update your older image by using: apt-get update and apt-get
upgrade.

1. check for new version in the table above

2. edit /etc/apt/sources.list and point to the new package feed

3. run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that an
incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

How do you flash the image?

Attention:
• You need a microSD card with at least 8GB capacity.

• All existing data on the microSD card will be lost.

• Do not format the microSD card before flashing.

Windows

5.4. Archive 85

https://download.bytesatwork.io/transfer/bytesatwork/m2/3.0/bytesatwork-minimal-image-bytepanel-emmc.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/m2/3.0/bytesatwork-minimal-image-bytepanel-emmc.wic.gz
https://download.bytesatwork.io/transfer/bytesatwork/m2/3.0/bytesatwork-minimal-image-bytepanel-emmc.wic.bmap

byteWIKI, Release 1.0

1. Unzip the file bytesatwork-minimal-image-bytepanel-emmc.wic.gz (e.g. with 7-zip)

2. Write the resulting file to the microSD card with a tool like Roadkils Disk Image

Linux

gunzip -c bytesatwork-minimal-image-bytepanel-emmc.wic.gz | dd of=/dev/mmcblk<X> bs=8M␣
→˓conv=fdatasync status=progress

Hint: To improve write performance, you could use bmap-tools under Linux:

bmaptool copy bytesatwork-minimal-image-bytepanel-emmc.wic.gz /dev/mmcblk<X>

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytepanel/3.0; cd ~/workdir/bytepanel/3.0
$ repo init -u https://github.com/bytesatwork/bsp-platform-ti.git -b zeus
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
bytePANEL:

$ cd ~/workdir/bytepanel/3.0
$ MACHINE=bytepanel DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image

The output is found in:

~/workdir/bytepanel/3.0/build/tmp/deploy/images/bytepanel

Hint: For additional information about yocto images and how to build them, please visit: https://www.yoctoproject.
org/docs/3.0/mega-manual/mega-manual.html#brief-building-your-image

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to
bytesatwork-minimal-image.bb

Rebuild the image by:

86 Chapter 5. Software Development

https://www.roadkil.net/program.php?ProgramID=12
https://www.yoctoproject.org/docs/3.0/mega-manual/mega-manual.html#brief-building-your-image
https://www.yoctoproject.org/docs/3.0/mega-manual/mega-manual.html#brief-building-your-image

byteWIKI, Release 1.0

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment␣
→˓build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/build/tmp/deploy/images/<machine␣
→˓name>
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

• Image size is too small
If you encounter that your image size is too small to install additional software, please have a look
at the IMAGE_ROOTFS_SIZE variable under ~/workdir/<machine-name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb. Increase the size if nec-
essary.

Toolchain

Where do you get the toolchain?

De-
vice

Yocto
Ver-
sion

Download Checksum (SHA256)

bytePANELYocto
3.0

poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-
image-armv7at2hf-neon-bytepanel-emmc-toolchain-
3.0.2.sh

a90763d7ff408e9e5f0556b051eccd3ea85c43406099c9a61d98a32e6a04e078

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is a self-extracting shell script.

Hint: If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is exe-
cutable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important:

5.4. Archive 87

https://download.bytesatwork.io/transfer/bytesatwork/m2/3.0/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-armv7at2hf-neon-bytepanel-emmc-toolchain-3.0.2.sh
https://download.bytesatwork.io/transfer/bytesatwork/m2/3.0/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-armv7at2hf-neon-bytepanel-emmc-toolchain-3.0.2.sh
https://download.bytesatwork.io/transfer/bytesatwork/m2/3.0/poky-bytesatwork-glibc-x86_64-bytesatwork-minimal-image-armv7at2hf-neon-bytepanel-emmc-toolchain-3.0.2.sh

byteWIKI, Release 1.0

The following tools need to be installed on your development system:
• xz (Debian package: xz-utils)

• python (any version)

• gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/3.0.2/environment-setup-armv7at2hf-neon-poky-linux-gnueabi

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -march=armv7-a -mthumb -mfpu=neon -mfloat-abi=hard --sysroot=/
→˓opt/poky-bytesatwork/3.0.2/sysroots/armv7at2hf-neon-poky-linux-gnueabi

Cross-compile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

How to bring your binary to the target?

1. Connect the embedded device’s ethernet to your LAN

2. Determine the embedded target IP address by ip addr show

88 Chapter 5. Software Development

byteWIKI, Release 1.0

3. Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/
tmp

4. Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

5. Run your binary on the target: /<path>/<binary name>

5.4. Archive 89

byteWIKI, Release 1.0

How do you build a toolchain?

$ cd ~/workdir/bytepanel/3.0
$ repo init -u https://github.com/bytesatwork/bsp-platform-ti.git -b zeus
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
bytePANEL:

$ cd ~/workdir/bytepanel/3.0
$ MACHINE=bytepanel DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake bytesatwork-minimal-image -c populate_sdk

The toolchain is located under:

~/workdir/bytepanel/3.0/build/tmp/deploy/sdk

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add addi-
tional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image
recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/
recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the
recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software com-
ponents, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit: https://www.yoctoproject.org/docs/3.0.3/overview-manual/overview-manual.
html#cross-development-toolchain-generation

90 Chapter 5. Software Development

https://www.yoctoproject.org/docs/3.0.3/overview-manual/overview-manual.html#cross-development-toolchain-generation
https://www.yoctoproject.org/docs/3.0.3/overview-manual/overview-manual.html#cross-development-toolchain-generation

byteWIKI, Release 1.0

Kernel

Download the Linux Kernel

Device Branch git URL
bytePANEL baw-ti-linux-4.19.y https://github.com/bytesatwork/ti-linux-kernel.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the provided toolchain from Where do you get the
toolchain? or any compatible toolchain (e.g. from your distribution)

Important:
The following tools need to be installed on your development system:

• git

• make

• bc

Note: The following instructions assume, you installed the provided toolchain for the respective target.

Important:
The following tools need to be installed on your development system:

• u-boot-tools

1. Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

2. Source toolchain

source /opt/poky-bytesatwork/3.0.2/environment-setup-armv7at2hf-neon-poky-linux-
→˓gnueabi

3. Create defconfig

make bytepanel_defconfig

4. Build Linux kernel

make LOADADDR=0x80008000 -j `nproc` uImage bytepanel.dtb

5.4. Archive 91

https://github.com/bytesatwork/ti-linux-kernel.git

byteWIKI, Release 1.0

5. Install kernel and device tree

To use the newly created kernel and device tree, the necessary files need to be installed on the target. This can
be done either via Ethernet (e.g. scp) or by copying the files to the SD card.

Note: For scp installation: Don’t forget to mount /boot on the target.

File Target path Target partition
arch/arm/boot/uImage /boot/uImage /dev/mmcblk0p1
arch/arm/boot/dts/bytepanel.dtb /boot/devtree.dtb /dev/mmcblk0p1

5.4.6 byteDEVKIT (Yocto 2.7)

Image

Where do you get the SD card image?

De-
vice

Yocto
Ver-
sion

Download Checksum (SHA256)

byt-
eDE-
VKIT

Yocto
2.7

flashlayout_bytesatwork-minimal-
image_FlashLayout_sdcard_stm32mp157c-
bytedevkit.raw.gz

7e62644473c21d200603b52d0080894a0ccfd950dd4a2f3c7df2b14753566de8

Hint: Updating from an older image? You can update your older image by using: apt-get update and apt-get
upgrade.

1. check for new version in the table above

2. edit /etc/apt/sources.list and point to the new package feed

3. run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that an
incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

92 Chapter 5. Software Development

https://download.bytesatwork.io/transfer/bytesatwork/m5/2.7/flashlayout_bytesatwork-minimal-image_FlashLayout_sdcard_stm32mp157c-bytedevkit.raw.gz
https://download.bytesatwork.io/transfer/bytesatwork/m5/2.7/flashlayout_bytesatwork-minimal-image_FlashLayout_sdcard_stm32mp157c-bytedevkit.raw.gz
https://download.bytesatwork.io/transfer/bytesatwork/m5/2.7/flashlayout_bytesatwork-minimal-image_FlashLayout_sdcard_stm32mp157c-bytedevkit.raw.gz

byteWIKI, Release 1.0

How do you flash the image?

Attention:
• You need a microSD card with at least 8GB capacity.

• All existing data on the microSD card will be lost.

• Do not format the microSD card before flashing.

Windows

1. Unzip the file flashlayout_bytesatwork-minimal-image_FlashLayout_sdcard_stm32mp157c-bytedevkit.
raw.gz (e.g. with 7-zip)

2. Write the resulting file to the microSD card with a tool like Roadkils Disk Image

Linux

gunzip -c flashlayout_bytesatwork-minimal-image_FlashLayout_sdcard_stm32mp157c-
→˓bytedevkit.raw.gz | dd of=/dev/mmcblk<X> bs=8M conv=fdatasync status=progress

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytedevkit/2.7; cd ~/workdir/bytedevkit/2.7
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b warrior
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT:

$ cd ~/workdir/bytedevkit/2.7
$ MACHINE=bytedevkit DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake devbase-image-bytesatwork

The output is found in:

~/workdir/bytedevkit/2.7/build/tmp/deploy/images/bytedevkit

5.4. Archive 93

https://www.roadkil.net/program.php?ProgramID=12

byteWIKI, Release 1.0

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to
bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment␣
→˓build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/build/tmp/deploy/images/<machine␣
→˓name>
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

• Image size is too small
If you encounter that your image size is too small to install additional software, please have a look
at the IMAGE_ROOTFS_SIZE variable under ~/workdir/<machine-name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb. Increase the size if nec-
essary.

Toolchain

Where do you get the toolchain?

De-
vice

Yocto
Ver-
sion

Download Checksum (SHA256)

byt-
eDE-
VKIT

Yocto
2.7

poky-bytesatwork-glibc-x86_64-devbase-image-
bytesatwork-cortexa7t2hf-neon-vfpv4-bytedevkit-
toolchain-2.7.1.sh

61896873ac7c75ac711a0b8e439ded6721d1a794deec26b4903178efbf51d307

94 Chapter 5. Software Development

https://download.bytesatwork.io/transfer/bytesatwork/poky-bytesatwork-glibc-x86_64-devbase-image-bytesatwork-cortexa7t2hf-neon-vfpv4-bytedevkit-toolchain-2.7.1.sh
https://download.bytesatwork.io/transfer/bytesatwork/poky-bytesatwork-glibc-x86_64-devbase-image-bytesatwork-cortexa7t2hf-neon-vfpv4-bytedevkit-toolchain-2.7.1.sh
https://download.bytesatwork.io/transfer/bytesatwork/poky-bytesatwork-glibc-x86_64-devbase-image-bytesatwork-cortexa7t2hf-neon-vfpv4-bytedevkit-toolchain-2.7.1.sh

byteWIKI, Release 1.0

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is a self-extracting shell script.

Hint: If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is exe-
cutable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important:
The following tools need to be installed on your development system:

• xz (Debian package: xz-utils)

• python (any version)

• gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/3.0.3/environment-setup-cortexa7t2hf-neon-vfpv4-poky-linux-
→˓gnueabi

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -mthumb -mfpu=neon-vfpv4 -mfloat-abi=hard -mcpu=cortex-a7 -
→˓fstack-protector-strong -D_FORTIFY_SOURCE=2 -Wformat -Wformat-security -Werror=format-
→˓security --sysroot=/opt/poky-bytesatwork/3.0.3/sysroots/cortexa7t2hf-neon-vfpv4-poky-
→˓linux-gnueabi

Crosscompile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

5.4. Archive 95

byteWIKI, Release 1.0

How to bring your binary to the target?

1. Connect the embedded device’s ethernet to your LAN

2. Determine the embedded target IP address by ip addr show

3. Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/
tmp

96 Chapter 5. Software Development

byteWIKI, Release 1.0

4. Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

5. Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytedevkit/2.7
$ repo init -u https://github.com/bytesatwork/bsp-platform-st.git -b warrior
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
byteDEVKIT:

$ ~/workdir/bytedevkit/2.7
$ MACHINE=bytedevkit DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake devbase-image-bytesatwork -c populate_sdk

The toolchain is located under:

~/workdir/bytedevkit/2.7/build/tmp/deploy/sdk

5.4. Archive 97

byteWIKI, Release 1.0

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add addi-
tional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image
recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/
recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the
recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software com-
ponents, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit: https://www.yoctoproject.org/docs/2.7.2/overview-manual/overview-manual.
html#cross-development-toolchain-generation

Kernel

Download the Linux Kernel

Device Branch git URL
byteDEVKIT baw-v4.19-stm32mp https://github.com/bytesatwork/linux-stm32mp.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the provided toolchain from Where do you get the
toolchain? or any compatible toolchain (e.g. from your distribution)

Important:
The following tools need to be installed on your development system:

• git

• make

• bc

98 Chapter 5. Software Development

https://www.yoctoproject.org/docs/2.7.2/overview-manual/overview-manual.html#cross-development-toolchain-generation
https://www.yoctoproject.org/docs/2.7.2/overview-manual/overview-manual.html#cross-development-toolchain-generation
https://github.com/bytesatwork/linux-stm32mp.git

byteWIKI, Release 1.0

Note: The following instructions assume, you installed the provided toolchain for the respective target.

Important:
The following tools need to be installed on your development system:

• OpenSSL headers (Debian package: libssl-dev)

• depmod (Debian package: kmod)

1. Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

2. Source toolchain

source /opt/poky-bytesatwork/3.0.3/environment-setup-cortexa7t2hf-neon-vfpv4-poky-
→˓linux-gnueabi

3. Create defconfig

make multi_v7_defconfig
scripts/kconfig/merge_config.sh -m -r .config arch/arm/configs/fragment-*
make olddefconfig

4. Build Linux kernel

make LOADADDR=0xC2000040 -j `nproc` uImage stm32mp157c-bytedevkit-v1-1.dtb modules

5. Install kernel and device tree

To use the newly created kernel, device tree and/or module, the necessary files need to be installed on the target.
This can be done either via Ethernet (e.g. scp) or by copying the files to the SD card.

Note: For scp installation: Don’t forget to mount /boot on the target.

File Target path Target parti-
tion

arch/arm/boot/uImage /boot/uImage /dev/
mmcblk0p4

arch/arm/boot/dts/
stm32mp157c-bytedevkit-v1-1.dtb

/boot/
stm32mp157c-bytedevkit.dtb

/dev/
mmcblk0p4

Note:
After installing a new kernel, it often fails to load modules, as the _signature_ of the kernel changed
and it fails to find its corresponding modules folder. This issue can often be resolved with a symlink:

ln -s /lib/modules/<EXISTING FOLDER> /lib/modules/`uname -r`

5.4. Archive 99

byteWIKI, Release 1.0

Otherwise, please follow the instructions to copy the kernel modules

6. Install kernel modules

To copy all available modules to the target, it’s best to deploy them locally first and then copy all modules to the
target.

mkdir /tmp/bytedevkit
make INSTALL_MOD_PATH=/tmp/bytedevkit modules_install

Now you can copy the content of the folder /tmp/bytedevkit into the target’s root folder (/) which is
partition /dev/mmcblk0p5.

5.4.7 bytePANEL (Yocto 2.7)

Image

Where do you get the SD card image?

De-
vice

Yocto
Version

Download Checksum (SHA256)

bytePANELYocto
2.7

devbase-image-bytesatwork-bytepanel-
emmc-20190729194430.sdimg.gz

3b3e51d83c68f68d6ebbc2983d6b41b9e21d4878c1c9570804e6949624d7a41e

Hint: Updating from an older image? You can update your older image by using: apt-get update and apt-get
upgrade.

1. check for new version in the table above

2. edit /etc/apt/sources.list and point to the new package feed

3. run apt-get update; apt-get upgrade

As the yocto framework is based on several packages from various projects or suppliers, it is not guaranteed that an
incremental upgrade by apt-get upgrade works automatically. Some manual adjustments might be needed.

100 Chapter 5. Software Development

https://download.bytesatwork.io/transfer/bytesatwork/m2/2.7/devbase-image-bytesatwork-bytepanel-emmc-20190729194430.sdimg.gz
https://download.bytesatwork.io/transfer/bytesatwork/m2/2.7/devbase-image-bytesatwork-bytepanel-emmc-20190729194430.sdimg.gz

byteWIKI, Release 1.0

How do you flash the image?

Attention:
• You need a microSD card with at least 8GB capacity.

• All existing data on the microSD card will be lost.

• Do not format the microSD card before flashing.

Windows

1. Unzip the file devbase-image-bytesatwork-bytepanel-emmc-20190729194430.sdimg.gz (e.g. with 7-
zip)

2. Write the resulting file to the microSD card with a tool like Roadkils Disk Image

Linux

gunzip -c devbase-image-bytesatwork-bytepanel-emmc-20190729194430.sdimg.gz | dd of=/dev/
→˓mmcblk<X> bs=8M conv=fdatasync status=progress

How do you build an image?

Use repo to download all necessary repositories:

$ mkdir -p ~/workdir/bytepanel/2.7; cd ~/workdir/bytepanel/2.7
$ repo init -u https://github.com/bytesatwork/bsp-platform.git -b warrior
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
bytePANEL:

$ cd ~/workdir/bytepanel/2.7
$ MACHINE=bytepanel DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds the development image:

$ cd $BUILDDIR
$ bitbake devbase-image-bytesatwork

The output is found in:

~/workdir/bytepanel/2.7/build/tmp/deploy/images/bytepanel

5.4. Archive 101

https://www.roadkil.net/program.php?ProgramID=12

byteWIKI, Release 1.0

How to modify the image

The image recipes can be found in ~/workdir/<machine name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images

This is relative to where you started the repo command to fetch all the sources.

Edit the minimal-image recipe bytesatwork-minimal-image.bb

Add the desired software-package to IMAGE_INSTALL variable, for example add net-tools to
bytesatwork-minimal-image.bb

Rebuild the image by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine name> DISTRO=poky-bytesatwork EULA=1 . setup-environment␣
→˓build
$ bitbake bytesatwork-minimal-image

How to rename the image

If you want to rename or copy an image, simply rename or copy the image recipe by:

$ cd ~/workdir/<machine name>/<yocto version>/build/tmp/deploy/images/<machine␣
→˓name>
$ cp bytesatwork-minimal-image.bb customer-example-image.bb

Troubleshooting

• Image size is too small
If you encounter that your image size is too small to install additional software, please have a look
at the IMAGE_ROOTFS_SIZE variable under ~/workdir/<machine-name>/<yocto version>/sources/
meta-bytesatwork/recipes-core/images/bytesatwork-minimal-image.bb. Increase the size if nec-
essary.

Toolchain

Where do you get the toolchain?

De-
vice

Yocto
Ver-
sion

Download Checksum (SHA256)

bytePANELYocto
2.7

poky-bytesatwork-glibc-x86_64-devbase-image-
bytesatwork-armv7at2hf-neon-bytepanel-toolchain-
2.7.3.sh

b25e4a3f764eaf583ad0e6a3e0edcac9a1a9314ab6d1f4aad290c415afdbe0e7

102 Chapter 5. Software Development

https://download.bytesatwork.io/transfer/bytesatwork/poky-bytesatwork-glibc-x86_64-devbase-image-bytesatwork-armv7at2hf-neon-bytepanel-toolchain-2.7.3.sh
https://download.bytesatwork.io/transfer/bytesatwork/poky-bytesatwork-glibc-x86_64-devbase-image-bytesatwork-armv7at2hf-neon-bytepanel-toolchain-2.7.3.sh
https://download.bytesatwork.io/transfer/bytesatwork/poky-bytesatwork-glibc-x86_64-devbase-image-bytesatwork-armv7at2hf-neon-bytepanel-toolchain-2.7.3.sh

byteWIKI, Release 1.0

How do you install the toolchain?

Simply download the toolchain and execute the downloaded file, which is a self-extracting shell script.

Hint: If you encounter problems when trying to install the toolchain, make sure the downloaded toolchain is exe-
cutable. Run chmod +x /<path>/<toolchain-file>.sh to make it executable.

Important:
The following tools need to be installed on your development system:

• xz (Debian package: xz-utils)

• python (any version)

• gcc

How do you use the toolchain?

Source the installed toolchain:

source /opt/poky-bytesatwork/3.0.2/environment-setup-armv7at2hf-neon-poky-linux-gnueabi

Check if Cross-compiler is available in environment:

echo $CC

You should see the following output:

arm-poky-linux-gnueabi-gcc -march=armv7-a -mthumb -mfpu=neon -mfloat-abi=hard --sysroot=/
→˓opt/poky-bytesatwork/3.0.2/sysroots/armv7at2hf-neon-poky-linux-gnueabi

Cross-compile the source code, e.g. by:

$CC helloworld.c -o helloworld

Check generated binary:

file helloworld

The output that is shown in prompt afterwards:

helloworld: ELF 32-bit LSB pie executable, ARM, EABI5 version 1

5.4. Archive 103

byteWIKI, Release 1.0

How to bring your binary to the target?

1. Connect the embedded device’s ethernet to your LAN

2. Determine the embedded target IP address by ip addr show

3. Copy your binary, e.g. helloworld to the target by scp helloworld root@<ip address of target>:/
tmp

104 Chapter 5. Software Development

byteWIKI, Release 1.0

4. Run chmod +x on the target to make your binary executable: chmod +x /<path>/<binary name>

5. Run your binary on the target: /<path>/<binary name>

How do you build a toolchain?

$ cd ~/workdir/bytepanel/2.7
$ repo init -u https://github.com/bytesatwork/bsp-platform.git -b warrior
$ repo sync

If those commands are completed successfully, the following command will set up a Yocto Project environment for
bytePANEL:

$ cd ~/workdir/bytepanel/2.7
$ MACHINE=bytepanel DISTRO=poky-bytesatwork EULA=1 . setup-environment build

The final command builds an installable toolchain:

$ cd $BUILDDIR
$ bitbake devbase-image-bytesatwork -c populate_sdk

The toolchain is located under:

~/workdir/bytepanel/2.7/build/tmp/deploy/sdk

5.4. Archive 105

byteWIKI, Release 1.0

How to modify your toolchain

Currently the bytesatwork toolchain is generated out of the bytesatwork-minimal-image recipe. If you want to add addi-
tional libraries and development headers to customize the toolchain, you need to modify the bytesatwork-minimal-image
recipe. It can be found under ~/workdir/<machine name>/<yocto version>/sources/meta-bytesatwork/
recipes-core/images

For example if you want to develop your own ftp client and you need libftp and the corresponding header files, edit the
recipe bytesatwork-minimal-image.bb and add ftplib to the IMAGE_INSTALL variable.

This will provide the ftplib libraries and development headers in the toolchain. After adding additional software com-
ponents, the toolchain needs to be rebuilt by:

$ cd ~/workdir/<machine name>/<yocto version>
$ MACHINE=<machine> DISTRO=poky-bytesatwork EULA=1 . setup-environment build
$ bitbake bytesatwork-minimal-image -c populate_sdk

The newly generated toolchain will be available under:

~/workdir/<machine name>/<yocto version>/build/tmp/deploy/sdk

For additional information, please visit: https://www.yoctoproject.org/docs/2.7.4/overview-manual/overview-manual.
html#cross-development-toolchain-generation

Kernel

Download the Linux Kernel

Device Branch git URL
bytePANEL baw-ti-linux-4.19.y https://github.com/bytesatwork/ti-linux-kernel.git

Build the Linux Kernel

For both targets, an ARM toolchain is necessary. You can use the provided toolchain from Where do you get the
toolchain? or any compatible toolchain (e.g. from your distribution)

Important:
The following tools need to be installed on your development system:

• git

• make

• bc

Note: The following instructions assume, you installed the provided toolchain for the respective target.

106 Chapter 5. Software Development

https://www.yoctoproject.org/docs/2.7.4/overview-manual/overview-manual.html#cross-development-toolchain-generation
https://www.yoctoproject.org/docs/2.7.4/overview-manual/overview-manual.html#cross-development-toolchain-generation
https://github.com/bytesatwork/ti-linux-kernel.git

byteWIKI, Release 1.0

Important:
The following tools need to be installed on your development system:

• u-boot-tools

1. Download kernel sources

Download the appropriate kernel from Download the Linux Kernel.

2. Source toolchain

source /opt/poky-bytesatwork/3.0.2/environment-setup-armv7at2hf-neon-poky-linux-
→˓gnueabi

3. Create defconfig

make bytepanel_defconfig

4. Build Linux kernel

make LOADADDR=0x80008000 -j `nproc` uImage bytepanel.dtb

5. Install kernel and device tree

To use the newly created kernel and device tree, the necessary files need to be installed on the target. This can
be done either via Ethernet (e.g. scp) or by copying the files to the SD card.

Note: For scp installation: Don’t forget to mount /boot on the target.

File Target path Target partition
arch/arm/boot/uImage /boot/uImage /dev/mmcblk0p1
arch/arm/boot/dts/bytepanel.dtb /boot/devtree.dtb /dev/mmcblk0p1

5.4. Archive 107

byteWIKI, Release 1.0

108 Chapter 5. Software Development

CHAPTER

SIX

HARDWARE DEVELOPMENT

We provide the development for a wide range of embedded systems, from small-scale embedded components to so-
phisticated embedded systems with increased security requirements. Our engineers are certified hardware experts and
provide long experience in business.

6.1 byteENGINE AM335x

• General Information: The byteENGINE AM335x is a high performance industrial oriented computing mod-
ule. It allows a short time-to-market, while reducing development costs and substantial design risks. The
system on module (SOM) uses the Texas Instruments AM335x industrial applications processor family. The
AM335x features a PowerVRTM SGX Graphics Accelerator Subsystem for 3D graphics acceleration. The Pro-
grammable Real-Time Unit and Industrial Communication Subsystem (PRU-ICSS) allows independent operation
from the ARM processor. PRU-ICSS enables real-time protocols such as EtherCAT, PROFINET, EtherNet/IP,
PROFIBUS, Ethernet Powerlink and Sercos.

The byteENGINE AM335x is a high performance industrial oriented computing module. It allows a short
time-to-market, while reducing development costs and substantial design risks.

The system on module (SOM) uses the Texas Instruments AM335x industrial applications processor family. The
AM335x features a PowerVRTM SGX Graphics Accelerator Subsystem for 3D graphics acceleration. The Pro-
grammable Real-Time Unit and Industrial Communication Subsystem (PRU-ICSS) allows independent operation
from the ARM processor. PRU-ICSS enables real-time protocols such as EtherCAT, PROFINET, EtherNet/IP,
PROFIBUS, Ethernet Powerlink and Sercos.

• Datasheet AM335x: https://www.bytesatwork.io/wp-content/uploads/2019/03/Datasheet_byteENGINE_
AM335x-12.pdf

• Prepared Pinmux file AM335x: https://download.bytesatwork.io/documentation/byteENGINE/ressources/
byteEngineM2-20160922.pinmux

• Detailed pinout AM335x: https://download.bytesatwork.io/documentation/byteENGINE/ressources/
PinmuxConfigSummary_byteEngineM2-20160922.xlsx

• Datasheet Connectors Neltron 2001S-100G-270-020: https://download.bytesatwork.io/documentation/
byteENGINE/ressources/Neltron_2000P.pdf

• Schematic of the connectors X1 and X2: https://download.bytesatwork.io/documentation/byteENGINE/
ressources/m2-connector.pdf

• Texas Instruments Sitara™ AM335x Processors: http://www.ti.com/processors/sitara-arm/
am335x-cortex-a8/overview.html

• AM335x Technical Reference Manual: https://www.ti.com/lit/ug/spruh73q/spruh73q.pdf

• TPS65910x Integrated Power-Management Unit: http://www.ti.com/lit/ds/symlink/tps65910.pdf

109

https://www.bytesatwork.io/wp-content/uploads/2019/03/Datasheet_byteENGINE_AM335x-12.pdf
https://www.bytesatwork.io/wp-content/uploads/2019/03/Datasheet_byteENGINE_AM335x-12.pdf
https://download.bytesatwork.io/documentation/byteENGINE/ressources/byteEngineM2-20160922.pinmux
https://download.bytesatwork.io/documentation/byteENGINE/ressources/byteEngineM2-20160922.pinmux
https://download.bytesatwork.io/documentation/byteENGINE/ressources/PinmuxConfigSummary_byteEngineM2-20160922.xlsx
https://download.bytesatwork.io/documentation/byteENGINE/ressources/PinmuxConfigSummary_byteEngineM2-20160922.xlsx
https://download.bytesatwork.io/documentation/byteENGINE/ressources/Neltron_2000P.pdf
https://download.bytesatwork.io/documentation/byteENGINE/ressources/Neltron_2000P.pdf
https://download.bytesatwork.io/documentation/byteENGINE/ressources/m2-connector.pdf
https://download.bytesatwork.io/documentation/byteENGINE/ressources/m2-connector.pdf
http://www.ti.com/processors/sitara-arm/am335x-cortex-a8/overview.html
http://www.ti.com/processors/sitara-arm/am335x-cortex-a8/overview.html
https://www.ti.com/lit/ug/spruh73q/spruh73q.pdf
http://www.ti.com/lit/ds/symlink/tps65910.pdf

byteWIKI, Release 1.0

6.2 byteENGINE STM32MP1x

• General Information: The byteENGINE STM32MP1x is a high performance industrial oriented computing
module. It allows you a short time-to-market, reducing development costs and substantial design risks.

The system on module (SOM) uses the STM32MP15xxAC devices which are based on the high-performance
dual-core ARM® Cortex®-A7 32-bit RISC core operating at up to 650MHz/800MHz. The STM32MP15xxAC
devices also embed a Cortex®-M4 32-bit RISC core operating at up to 200 MHz frequency. The Cortex®-M4
core features a floating point unit (FPU) single precision which supports ARM® single-precision dataprocessing
instructions and data types.

Furthermore, the STM32MP15xxAC devices embed a 3D graphic processing unit (Vivante® - OpenGL® ES
2.0) running at up to 533 MHz, with performances up to 26 Mtriangle/s, 133 Mpixel/s.

• Factsheet STM32MP1x: https://www.bytesatwork.io/wp-content/uploads/2019/04/Fact-Sheet-byteENGINE_
STM32MP1x.pdf

• Datasheet STM32MP1x: https://www.bytesatwork.io/wp-content/uploads/2019/12/Datasheet_byteENGINE_
STM32MP1x-6.pdf

• Detailed pinout STM32MP1x: https://download.bytesatwork.io/documentation/byteENGINE/ressources/
byteENGINE-M5-pinout.xlsx

• Datasheet Connectors Neltron 2001S-100G-270-020: https://download.bytesatwork.io/documentation/
byteENGINE/ressources/Neltron_2000P.pdf

• Schematic of the connectors X1 and X2: https://download.bytesatwork.io/documentation/byteENGINE/
ressources/m5-connector-pinout.pdf

• STMicroelectronics STM32MP1: https://www.st.com/en/microcontrollers-microprocessors/
stm32mp1-series.html

• STPMIC1 power management IC: https://www.st.com/en/power-management/stpmic1.html

• Datasheet STM32MP157C: https://www.st.com/resource/en/datasheet/stm32mp157c.pdf

• STM32CubeMX Software Download: https://www.st.com/en/development-tools/stm32cubemx.html

• STM32MP1x prepared CubeMX Project: https://download.bytesatwork.io/documentation/byteENGINE/
ressources/byteENGINE_STM32MP1.ioc

• Prepared project: step model STM32MP1x: https://download.bytesatwork.io/documentation/byteENGINE/
ressources/byteengine-m5.step

• Altium Library Neltron 2001S-100G-270-020: https://download.bytesatwork.io/documentation/
byteENGINE/ressources/2001s-100G-270-020.zip

• Altium Library byteENGINE STM32MP1x (X1/X2 position mask on layer 21): https://download.
bytesatwork.io/documentation/byteENGINE/ressources/Footprint-byteENGINE-M5.zip

110 Chapter 6. Hardware Development

https://www.bytesatwork.io/wp-content/uploads/2019/04/Fact-Sheet-byteENGINE_STM32MP1x.pdf
https://www.bytesatwork.io/wp-content/uploads/2019/04/Fact-Sheet-byteENGINE_STM32MP1x.pdf
https://www.bytesatwork.io/wp-content/uploads/2019/12/Datasheet_byteENGINE_STM32MP1x-6.pdf
https://www.bytesatwork.io/wp-content/uploads/2019/12/Datasheet_byteENGINE_STM32MP1x-6.pdf
https://download.bytesatwork.io/documentation/byteENGINE/ressources/byteENGINE-M5-pinout.xlsx
https://download.bytesatwork.io/documentation/byteENGINE/ressources/byteENGINE-M5-pinout.xlsx
https://download.bytesatwork.io/documentation/byteENGINE/ressources/Neltron_2000P.pdf
https://download.bytesatwork.io/documentation/byteENGINE/ressources/Neltron_2000P.pdf
https://download.bytesatwork.io/documentation/byteENGINE/ressources/m5-connector-pinout.pdf
https://download.bytesatwork.io/documentation/byteENGINE/ressources/m5-connector-pinout.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-series.html
https://www.st.com/en/power-management/stpmic1.html
https://www.st.com/resource/en/datasheet/stm32mp157c.pdf
https://www.st.com/en/development-tools/stm32cubemx.html
https://download.bytesatwork.io/documentation/byteENGINE/ressources/byteENGINE_STM32MP1.ioc
https://download.bytesatwork.io/documentation/byteENGINE/ressources/byteENGINE_STM32MP1.ioc
https://download.bytesatwork.io/documentation/byteENGINE/ressources/byteengine-m5.step
https://download.bytesatwork.io/documentation/byteENGINE/ressources/byteengine-m5.step
https://download.bytesatwork.io/documentation/byteENGINE/ressources/2001s-100G-270-020.zip
https://download.bytesatwork.io/documentation/byteENGINE/ressources/2001s-100G-270-020.zip
https://download.bytesatwork.io/documentation/byteENGINE/ressources/Footprint-byteENGINE-M5.zip
https://download.bytesatwork.io/documentation/byteENGINE/ressources/Footprint-byteENGINE-M5.zip

CHAPTER

SEVEN

ERRATA

Known issues

• byteDEVKIT < V1.2

– STM32MP1 Ethernet

7.1 byteDEVKIT < V1.2

7.1.1 STM32MP1 Ethernet

Due to a hardware issue at the ethernet PHY autonegotiation is disabled.
Using the ethernet setting from Device Tree of 1 GbE will not work on ethernet switches < 1 GbE.
As a workaround the ethtool could be used to set the speed manually.

Download it from here, copy it to the SD card and install it on the target with:

dpkg -i ethtool_5.4-r0_armhf.deb

Set the desired speed manually:

ethtool -s eth0 speed 100 duplex full
or even
ethtool -s eth0 speed 10 duplex half

111

http://packages.bytesatwork.io/yocto/3.1.11/bytedevkit-stm32mp1/cortexa7t2hf-neon-vfpv4/ethtool_5.4-r0_armhf.deb

	About the company
	Our philosophy

	Unboxing byteDEVKIT STM32MP1
	Technical overview byteDEVKIT STM32MP1
	Unboxing Video Tutorial

	First start byteDEVKIT STM32MP1
	Connecting the Hardware and first Booting

	Bring-up byteDEVKIT STM32MP1
	How do I connect to byteDEVKIT using the serial console?
	LINUX
	WINDOWS

	How to install additional software using apt

	Software Development
	byteDEVKIT-am62x (Yocto 4.0)
	Downloads
	SD card image
	Toolchain
	U-Boot

	Image
	How do you flash the image?
	How do you build an image?
	How to modify the image
	How to rename the image
	Troubleshooting

	Toolchain
	How do you install the toolchain?
	How do you use the toolchain?
	How to bring your binary to the target?
	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel
	Build the Linux Kernel

	U-Boot
	Download U-Boot Source Code
	Build U-Boot
	Install SPL and U-Boot
	SD Card
	eMMC via SD Card

	byteDEVKIT-imx8mm (Yocto 4.0)
	Downloads
	SD card image
	Toolchain
	U-Boot

	Image
	How do you flash the image?
	How do you build an image?
	How to modify the image
	How to rename the image
	Troubleshooting

	Toolchain
	How do you install the toolchain?
	How do you use the toolchain?
	How to bring your binary to the target?
	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel
	Build the Linux Kernel

	U-Boot
	Download U-Boot Source Code
	Build U-Boot
	Install SPL and U-Boot

	byteDEVKIT-stm32mp1 (Yocto 4.0)
	Downloads
	SD card image
	Toolchain
	U-Boot

	Image
	How do you flash the image?
	How do you build an image?
	How to modify the image
	How to rename the image
	Troubleshooting

	Toolchain
	How do you install the toolchain?
	How do you use the toolchain?
	How to bring your binary to the target?
	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel
	Build the Linux Kernel

	U-Boot
	Download U-Boot Source Code
	Build U-Boot
	Install SPL and U-Boot

	Archive
	byteDEVKIT-am335x (Yocto 3.1)
	Image
	Where do you get the SD card image?
	How do you flash the image?
	How do you build an image?
	How to modify the image
	How to rename the image
	Troubleshooting

	Toolchain
	Where do you get the toolchain?
	How do you install the toolchain?
	How do you use the toolchain?
	How to bring your binary to the target?
	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel
	Build the Linux Kernel

	byteDEVKIT-stm32mp1 (Yocto 3.1)
	Downloads
	SD card image
	Toolchain
	U-Boot

	Image
	How do you flash the image?
	How do you build an image?
	How to modify the image
	How to rename the image
	Troubleshooting

	Toolchain
	How do you install the toolchain?
	How do you use the toolchain?
	How to bring your binary to the target?
	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel
	Build the Linux Kernel

	U-Boot
	Download U-Boot
	Build U-Boot
	Install SPL and U-Boot

	byteDEVKIT-stm32mp1 (Yocto 3.2)
	Image
	Where do you get the SD card image?
	How do you flash the image?
	How do you build an image?
	How to modify the image
	How to rename the image
	Troubleshooting

	Toolchain
	Where do you get the toolchain?
	How do you install the toolchain?
	How do you use the toolchain?
	How to bring your binary to the target?
	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel
	Build the Linux Kernel

	U-Boot
	Download U-Boot
	Build U-Boot

	byteDEVKIT (Yocto 3.0)
	Image
	Where do you get the SD card image?
	How do you flash the image?
	How do you build an image?
	How to modify the image
	How to rename the image
	Troubleshooting

	Toolchain
	Where do you get the toolchain?
	How do you install the toolchain?
	How do you use the toolchain?
	How to bring your binary to the target?
	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel
	Build the Linux Kernel

	bytePANEL (Yocto 3.0)
	Image
	Where do you get the SD card image?
	How do you flash the image?
	How do you build an image?
	How to modify the image
	How to rename the image
	Troubleshooting

	Toolchain
	Where do you get the toolchain?
	How do you install the toolchain?
	How do you use the toolchain?
	How to bring your binary to the target?
	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel
	Build the Linux Kernel

	byteDEVKIT (Yocto 2.7)
	Image
	Where do you get the SD card image?
	How do you flash the image?
	How do you build an image?
	How to modify the image
	How to rename the image
	Troubleshooting

	Toolchain
	Where do you get the toolchain?
	How do you install the toolchain?
	How do you use the toolchain?
	How to bring your binary to the target?
	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel
	Build the Linux Kernel

	bytePANEL (Yocto 2.7)
	Image
	Where do you get the SD card image?
	How do you flash the image?
	How do you build an image?
	How to modify the image
	How to rename the image
	Troubleshooting

	Toolchain
	Where do you get the toolchain?
	How do you install the toolchain?
	How do you use the toolchain?
	How to bring your binary to the target?
	How do you build a toolchain?
	How to modify your toolchain

	Kernel
	Download the Linux Kernel
	Build the Linux Kernel

	Hardware Development
	byteENGINE AM335x
	byteENGINE STM32MP1x

	Errata
	byteDEVKIT < V1.2
	STM32MP1 Ethernet

